簡易檢索 / 詳目顯示

研究生: 劉明棟
Liu, Ming-Dong
論文名稱: Sn/3.8Ag/0.7Cu具不同應變率及溫度效應之疲勞壽命預估-含損傷內涵時間黏塑性理論之應用
Endochronic Prediction of Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder with Strain Rate and Temperature Effects
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: Sn/3.8Ag/0.7Cu銲錫equiaxed structure含損傷內涵時間黏塑性理論疲勞初始壽命T-LCM公式
外文關鍵詞: Sn/3.8Ag/0.7Cu solder, Equiaxed structure, Endochronic viscoplastic with damage theory, T-LCM equation for fatigue initial life
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以含損傷內涵時間黏塑性理論依Zeng及Shang等人對Sn/3.8Ag/0.7Cu銲錫(Equiaxed)於298K、應變率 之單軸循環拉伸實驗數據為對象,以核心函數 及應變率敏感函數 建立不同應變率下穩態循環應力-應變曲線( ),發現 。疲勞壽命除 外,其餘不同應變率壽命對 分佈無明顯不同。以Endochronic疲勞壽命預估公式在 、 不同應變率下以 vs. 作圖得斜率為0.46之直線。因 之試棒製作冷卻速率較快,疲勞壽命較短,其直線截距值較小。
    再以Shang等人對同材料於 、不同溫度下(T=298K~393K)之單軸拉伸疲勞實驗為依據,提議內涵時間黏塑性理論之核心函數只有參數 與溫度呈指數函數關係,並利用不同溫度 下穩態之 實驗數據決定其指數。利用循環壽命值隨溫度及 上升而下降之現象,提議循環損傷程度亦隨溫度及 上升而擴大。依此可推導出T-modify損傷乘冪公式及T-modified Lee-Coffin-Manson(T-LCM)壽命預估公式: 。由各溫度下Load-Drop數據決定臨界損傷因子 。發現損傷乘冪指數為常數與溫度無關。各溫度下疲勞壽命以T=298K為基準,依 修正壽命,以 vs. 作圖可得兩直線,在 時C=0.46,其斜率與 之值相同,在 時,其斜率C=0.66大於 之值。各溫度預估結果與實驗數據相當吻合。

    In this paper, the damage-coupled endochronic viscoplasticity was used in the cyclic uniaxial tensile test data of the Sn/3.8Ag/0.7Cu solder (equiaxed) at 298K and strain rate . The kernel functions ; and the strain rate sensitivity function were employed to construct the strain rate dependent steady cyclic stress - strain equations: . Except , the fatigue life of all strain rates are not significantly different. Using the endochronic fatigue life prediction formula in and , a straight line drawn in the vs. plot has slope C= 0.46. Due to rapid cooling rate of specimen’s preparation, the line to predict the fatigue life at , has the same slope, but the life is shorter.
    The uniaxial tensile fatigue data of the Sn/3.8Ag/0.7Cu solder under different temperatures (T = 298K ~ 393K). were used to determine the exponential function of . By proposing the degree of damage depends on positively N、T and , the T-modify power form damage equation and the T-modified Lee-Coffin-Manson (T-LCM) equation for life prediction: can be derived. From load-drop curves of all temperature, the critical damage factor , and the exponent of damage power form is a constant. Based on T=298K, fatigue life of all temperatures under vs. plot, two straight lines can be drawn in which slope C=0.46 at , and C=0.66 at . The T-LCM equation can predict the experimental data quite well.

    摘 要. I Abstract…………………………………………………………………………...…..….II 致 謝…………………………………………………………...…………..………….IV 目 錄. V 表目錄. VIII 圖目錄. VIII 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3-1 Sn/3.8Ag/0.7Cu銲錫材料文獻回顧 2 1-3-2 內涵時間黏塑性理論文獻回顧 4 第二章 含損傷內涵時間黏塑性理論 6 2-1 內涵時間黏塑性理論 6 2-2 含損傷內涵黏塑性理論 9 2-3 內涵損傷演化方程式 10 2-4 循環損傷與非彈性應變範圍之關係 11 第三章 Sn/3.8Ag/0.7Cu銲錫含損傷內涵時間黏塑性理論在定溫及對不同應變率下初始疲勞壽命之預估 16 3-1 本章介紹 16 3-2 定應變振幅且不同應變率下材料函數 之決定 16 3-3 不同應變率下循環應力-非彈性應變關係式 19 3-4 不同應變率循環損傷乘冪公式及其指數n之決定 19 3-5 之決定 22 3-6不同應變率下Endochronic疲勞初始壽命預估 24 3-6-1 參數 之計算與討論 24 3-6-2 Endochronic疲勞初始壽命之預估 26 第四章 Sn/3.8Ag/0.7Cu銲錫定應變率及不同溫度下內涵時間黏塑性理論(T-LCM公式)疲勞初始壽命之預估 28 4-1 本章介紹 28 4-2核心函數 之決定 28 4-3 之決定與循環應力應變關係式 29 4-4 不同溫度下Endochronic(T-LCM公式)疲勞初始壽命預估 31 4-4-1 T-損傷乘冪公式及T-LCM公式推導……………………….32 4-4-2不同溫度下損傷乘冪指數n之決定……………………….33 4-4-3 疲勞初始壽命斜率C及 的決定 34 4-4-4 Damage equation中函數 之決定 36 4-5 Power form damage equation中 之決定 38 第五章 結論………………………………………………………………...40 附 表. 42 附 圖. 43 參考文獻 80 自 述. 83

    [1] Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Cyclic Softening of the Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy with Equiaxed Grain Structure,” Journal of Electronic Materials, Vol. 34, No.1, pp.62-67, 2005.
    [2] Shang J. K., Zeng Q. L., Zhang L., and Zhu Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. In Electron., Vol. 18(1-3), pp. 211-227, 2007.
    [3] Zeng Q. L., Wang Z. G., and Shang J. K., “Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-free Solder,” Key Engineering Materials, Vols. 345-346, pp.239-242, 2007.
    [4] Kanchanomai C., Miyashita Y., Mutoh Y., and Mannan S. L., “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn–3.5Ag,” Material Science and Engineering A 345, pp.90-98, 2003.
    [5] Kanchanomai C., Mutoh Y., “Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn-Ag Eutectic Solder,” Material Science and Engineering A 381, pp.113-120, 2004
    [6] Zhu Q. S., Wang Z. G., Zeng Q. L., Wu S. D., and Shang J. K., “Rapid Cycle-Dependent Softening of Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Journal of Material Research., Vol. 23, No. 10, pp.2630-2638, 2008.
    [7] Zhu Q. S., Wang Z. G., Wu S. D., and Shang J. K, “Enhanced Rate-Dependent Tensile Deformation in Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Material Science and Engineering A 502, pp.153-158, 2009.
    [8] Lee C. F., and Shieh T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech., Vol. 22, No.3, pp.181-191, 2006.
    [9] Lee C. F., and Chen Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” J. of Mech., Vol. 23, No.4, pp. 433-444, 2007.
    [10] 歐士豪,含損傷內涵時間黏塑性理論對Sn/Ag/Cu銲錫低應變率疲勞及熱循環耦合循環熱-力行為及不同應變率疲勞初始壽命預估,
    碩士論文-國立成功大學工程科學系,2008。
    [11] 孫佳暐,Sn/3.8Ag/0.7Cu不同應變率或溫度下疲勞初始壽命預估-涵損傷內含時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2008。
    [12] Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅠ. General Theory,” Archives of Mechanics, pp. 517-533, 1971.
    [13] Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅡ. Application to Mechanical Behavior of Metal,” Archives of Mechanics, pp. 535-551, 1971.
    [14] Lee C. F., “Recent Finite Element Applications of the Incremental Endochronic Plasticity,” International Journal of Plasticity, Vol. 11, No.7, pp. 843-865, 1995.
    [15] Lee C. F., “Numerical Method of the Incremental Endochronic Plasticity,” The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992.
    [16] Stolkarts, V., Keer, L. M., and Fine M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp.2451-2468, 1999.
    [17] Lau J. and Dauksher W., “Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints,” IEEE Electronic Components and Technology Conference, pp. 1292-1298, 2005.
    [18] Lee C. F., Lee Z. H., and Ou S. H., “The Endochronic Viscoplasticity for Sn/3.9Ag/0.6Cu Solder Under Low Strain Rate Fatigue Laoding Coupled Thermal Cycling,” J. of Mech., Vol. 25, No.3, pp. 261-270, 2009.
    [19] Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.

    下載圖示 校內:立即公開
    校外:2011-07-30公開
    QR CODE