| 研究生: |
劉明棟 Liu, Ming-Dong |
|---|---|
| 論文名稱: |
Sn/3.8Ag/0.7Cu具不同應變率及溫度效應之疲勞壽命預估-含損傷內涵時間黏塑性理論之應用 Endochronic Prediction of Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder with Strain Rate and Temperature Effects |
| 指導教授: |
李超飛
Lee, Chau-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | Sn/3.8Ag/0.7Cu銲錫 、equiaxed structure 、含損傷內涵時間黏塑性理論 、疲勞初始壽命T-LCM公式 |
| 外文關鍵詞: | Sn/3.8Ag/0.7Cu solder, Equiaxed structure, Endochronic viscoplastic with damage theory, T-LCM equation for fatigue initial life |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以含損傷內涵時間黏塑性理論依Zeng及Shang等人對Sn/3.8Ag/0.7Cu銲錫(Equiaxed)於298K、應變率 之單軸循環拉伸實驗數據為對象,以核心函數 及應變率敏感函數 建立不同應變率下穩態循環應力-應變曲線( ),發現 。疲勞壽命除 外,其餘不同應變率壽命對 分佈無明顯不同。以Endochronic疲勞壽命預估公式在 、 不同應變率下以 vs. 作圖得斜率為0.46之直線。因 之試棒製作冷卻速率較快,疲勞壽命較短,其直線截距值較小。
再以Shang等人對同材料於 、不同溫度下(T=298K~393K)之單軸拉伸疲勞實驗為依據,提議內涵時間黏塑性理論之核心函數只有參數 與溫度呈指數函數關係,並利用不同溫度 下穩態之 實驗數據決定其指數。利用循環壽命值隨溫度及 上升而下降之現象,提議循環損傷程度亦隨溫度及 上升而擴大。依此可推導出T-modify損傷乘冪公式及T-modified Lee-Coffin-Manson(T-LCM)壽命預估公式: 。由各溫度下Load-Drop數據決定臨界損傷因子 。發現損傷乘冪指數為常數與溫度無關。各溫度下疲勞壽命以T=298K為基準,依 修正壽命,以 vs. 作圖可得兩直線,在 時C=0.46,其斜率與 之值相同,在 時,其斜率C=0.66大於 之值。各溫度預估結果與實驗數據相當吻合。
In this paper, the damage-coupled endochronic viscoplasticity was used in the cyclic uniaxial tensile test data of the Sn/3.8Ag/0.7Cu solder (equiaxed) at 298K and strain rate . The kernel functions ; and the strain rate sensitivity function were employed to construct the strain rate dependent steady cyclic stress - strain equations: . Except , the fatigue life of all strain rates are not significantly different. Using the endochronic fatigue life prediction formula in and , a straight line drawn in the vs. plot has slope C= 0.46. Due to rapid cooling rate of specimen’s preparation, the line to predict the fatigue life at , has the same slope, but the life is shorter.
The uniaxial tensile fatigue data of the Sn/3.8Ag/0.7Cu solder under different temperatures (T = 298K ~ 393K). were used to determine the exponential function of . By proposing the degree of damage depends on positively N、T and , the T-modify power form damage equation and the T-modified Lee-Coffin-Manson (T-LCM) equation for life prediction: can be derived. From load-drop curves of all temperature, the critical damage factor , and the exponent of damage power form is a constant. Based on T=298K, fatigue life of all temperatures under vs. plot, two straight lines can be drawn in which slope C=0.46 at , and C=0.66 at . The T-LCM equation can predict the experimental data quite well.
[1] Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Cyclic Softening of the Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy with Equiaxed Grain Structure,” Journal of Electronic Materials, Vol. 34, No.1, pp.62-67, 2005.
[2] Shang J. K., Zeng Q. L., Zhang L., and Zhu Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sci : Mater. In Electron., Vol. 18(1-3), pp. 211-227, 2007.
[3] Zeng Q. L., Wang Z. G., and Shang J. K., “Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-free Solder,” Key Engineering Materials, Vols. 345-346, pp.239-242, 2007.
[4] Kanchanomai C., Miyashita Y., Mutoh Y., and Mannan S. L., “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn–3.5Ag,” Material Science and Engineering A 345, pp.90-98, 2003.
[5] Kanchanomai C., Mutoh Y., “Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn-Ag Eutectic Solder,” Material Science and Engineering A 381, pp.113-120, 2004
[6] Zhu Q. S., Wang Z. G., Zeng Q. L., Wu S. D., and Shang J. K., “Rapid Cycle-Dependent Softening of Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Journal of Material Research., Vol. 23, No. 10, pp.2630-2638, 2008.
[7] Zhu Q. S., Wang Z. G., Wu S. D., and Shang J. K, “Enhanced Rate-Dependent Tensile Deformation in Equal Channel Angularly Pressed Sn-Ag-Cu Alloy,” Material Science and Engineering A 502, pp.153-158, 2009.
[8] Lee C. F., and Shieh T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech., Vol. 22, No.3, pp.181-191, 2006.
[9] Lee C. F., and Chen Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy,” J. of Mech., Vol. 23, No.4, pp. 433-444, 2007.
[10] 歐士豪,含損傷內涵時間黏塑性理論對Sn/Ag/Cu銲錫低應變率疲勞及熱循環耦合循環熱-力行為及不同應變率疲勞初始壽命預估,
碩士論文-國立成功大學工程科學系,2008。
[11] 孫佳暐,Sn/3.8Ag/0.7Cu不同應變率或溫度下疲勞初始壽命預估-涵損傷內含時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2008。
[12] Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅠ. General Theory,” Archives of Mechanics, pp. 517-533, 1971.
[13] Valanis K. C., “A Theory of Viscoplasticity without a Yield Surface, PartⅡ. Application to Mechanical Behavior of Metal,” Archives of Mechanics, pp. 535-551, 1971.
[14] Lee C. F., “Recent Finite Element Applications of the Incremental Endochronic Plasticity,” International Journal of Plasticity, Vol. 11, No.7, pp. 843-865, 1995.
[15] Lee C. F., “Numerical Method of the Incremental Endochronic Plasticity,” The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992.
[16] Stolkarts, V., Keer, L. M., and Fine M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp.2451-2468, 1999.
[17] Lau J. and Dauksher W., “Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints,” IEEE Electronic Components and Technology Conference, pp. 1292-1298, 2005.
[18] Lee C. F., Lee Z. H., and Ou S. H., “The Endochronic Viscoplasticity for Sn/3.9Ag/0.6Cu Solder Under Low Strain Rate Fatigue Laoding Coupled Thermal Cycling,” J. of Mech., Vol. 25, No.3, pp. 261-270, 2009.
[19] Zeng Q. L., Wang Z. G., Xian A. P., and Shang J. K., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese J. Material Research., Vol. 18, pp. 11-17, 2004.