簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Tsung-Han
論文名稱: 具動態分類導引機制之視覺化知識物件導覽系統
A Knowledge Navigation System for Visual Knowledge Objects with Adaptive Taxonomic Guiding
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 47
中文關鍵詞: 導覽視覺化正規概念分析概念格
外文關鍵詞: Concept Lattice, Formal Concept Analysis, Visualization, Navigation
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今生活中,知識工作者常常廣泛的運用許多視覺化知識物件以表達他們的意見、提案、發現和報告。一個有效率的視覺化知識物件搜尋及關係呈現系統將能幫助知識工作者提高生產力。本研究針對微軟的線上多媒體藝廊提出一個視覺化知識物件的搜尋及導覽系統,利用正規概念分析法呈現視覺化知識物件之間的關係。此系統能從知識庫中快速的檢索視覺化知識物件,並改進利用正規概念分析法所獲得之概念格以利導覽。最後實際測試將概念格視覺化以及此系統的使用者介面是否真正能提升知識工作者的生產力。

    Nowadays, there are large number of visual knowledge objects (VKOs) which are widely used by knowledge workers to present their ideas, proposals, findings and reports. An efficient system for searching VKOs and representing their relationships is useful to increase productivity. This thesis proposes a VKOs searching and navigation system against Microsoft Online Clip Art Gallery with ability to show relations between VKOs by using Formal Concept Analysis (FCA). This system allows fast retrieval of VKOs from the knowledge repository. Improvements are made in order to provide better navigation of concept lattice. The usability of the visualization of concept lattice and user interfaces in the system will be investigated and evaluated to determine whether knowledge workers can improve their productivity.

    摘 要 I Abstract II Acknowledgement III Table of Contents IV List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Aims and Objectives 2 1.3 Research Limitations 2 1.4 The Process of the Research 3 1.5 The Structure of this Thesis 4 Chapter 2. Literature Review 5 2.1 Formal Concept Analysis 5 2.1.1 Formal Context 5 2.1.2 Formal Concept 6 2.1.3 Concept Lattice 6 2.2 Problems of FCA while Processing Large Datasets 7 2.2.1 Iceberg Concept Lattices 9 2.3 Information Retrieval 12 2.3.1 Stemming 12 2.3.2 Standard Boolean Model 13 2.3.3 Image Retrieval 14 2.4 Concept Lattice Visualization 16 Chapter 3. Research Method 17 3.1 Knowledge Filtering 18 3.2 Knowledge Profiling 18 3.3 Knowledge Representation 19 3.3.1 Iceberg Concept Lattice with Adaptive Support 19 3.3.2 Differential View of Node Content 22 3.3.3 Sub-Concepts Sorting 23 Chapter 4. System Implementation and Evaluation 25 4.1 System Implementation 25 4.1.1 Development Environment 25 4.1.2 Data Collection 26 4.1.3 Deciding the Value of adaptive_support 29 4.1.4 User Interface 30 4.1.5 System Performance 31 4.2 Usability Evaluation 32 4.2.1 Subjective Assessment of Usability 32 4.2.2 Interpreting the Usability Results 36 4.2.2.1 Efficiency Test 36 4.2.2.2 Post-Test Survey 39 Chapter 5. Conclusions 43 References 45

    Ahamd, I. & Jang. T. S., Old Fashion Text-Based Image Retrieval Using FCA. Proc. 2003 International Conference on Image Processing, 2003.
    Baeza-Yates, R. & Neto-Ribeiro, B., Modern Information Retrieval. Boston: Addison-Wesley Longman Publishing Co., Inc., 1999.
    Carpineto, C. & Romano, G., Concept Data Analysis – Theory and Applications. Wiley , 2004.
    Cigarran, J. M., Gonzalo, J., Penas, A., & Verdejo, F., Browsing Search Results via Formal Concept Analysis - Automatic Selection of Attributes. Proceedings of the 2nd International Conference on Formal Concept Analysis - ICFCA'04 , 2004.
    Cimiano, P., Hotho, A., Stumme, G., & Tane, J., Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies. International Conference on Formal Concept Analysis (ICFCA), 189-207, 2004.
    Cole, R., Stumme, G., CEM – A Conceptual Email Manager. Proceedings of 8th International Conference on Conceptual Structure, 438-452 , 2000.
    Ducrou, J. & Eklund, P., Browsing and searching MPEG-7 images using formal concept analysis. Proceedings of the 24th IASTED international conference on Artificial intelligence and applications, 317-322, 2006.
    Eklund, P., Ducrou, J., & Brawn, P., Concept Lattices for Information Visualization: Can Novices Read Line-Diagrams?, Proceedings of the 2nd International Conference on Formal Concept Analysis - ICFCA'04 , 2004.
    Ganter, B., & Wille, R., Formal Concept Analysis: Mathematical Foundations. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997.
    Goodrum, A. A., Image Information Retrieval: An overview of Current Research. Information Science 3(2), 63-67, 2000.
    Hare, J. S., Lewis, P. H., Enser, P. G. B. & Sandom, C. J., Mind the Gap: Another look at the problem of the semantic gap in image retrieval. Proceedings of Multimedia Content Analysis, Management and Retrieval, 6073, 2006.
    Koshman, S., Visualization-based information retrieval on the web. Library & Information Science Research, 28, 192-207, 2006.
    Li, M., & Wang, T., An Approach to Image Retrieval Based on Concept Lattices and Rough Set Theory. Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications and Technologies, 845-849, 2005
    Li, S. T. & Chang, W. C., Design and Evaluation of a Layered Thematic Knowledge Map System. Journal of Computer Information Systems, 2008.
    Loisant, E., Martinez, J., Ishikawa, H., & Katayama, K., Galois’ Lattices as a Classification Technique for Image Retrieval. IPSJ Digital Courier, 2, 1-13, 2006.
    Morse, E., Lewis, M. & Olsen K. A., Evaluating Visualizations: Using a Taxonomic Guide. International Journal of Human-Computer Studies, 53(5), 637-662, 2000.
    O’Reilly, T., What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software, 2005. Retrieved January 24, 2008, from
    http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
    Ong, T. H., Chen, H., Sung, W. K., Zhu, B., Newsmap: A Knowledge Map for Online News. Decision Support Systems, 39, 583-597, 2005.
    Plaisant, C., The Challenge of Information Visualization Evaluation. Proceedings of the Working Conference on Advanced Visual Interfaces, ACM Press, 109-116, 2004.
    Porter M. F., An algorithm for suffix stripping, Program, 14(3), 130-137, 1980.
    Qian, Y., Data Synchronization and Browsing for Home Environment. Ph. D. thesis, Technische Universiteit Eindhoven, The Netherlands, 2004.
    Rozanski E. P. & Haake A. R., The Many Facets of HCI. CITC4 2003: Proceedings of the 4th conference on Information technology curriculum, 180-185, 2003.
    Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R., Content-based image retrieval at the end of the early years. Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1349-1380, 2000.
    Specia, L. & Motta, E., Integrating Folksonomies with the Semantic Web. Proceedings of the European Semantic Web Conference, 2007.
    Stumme, G., Taouil, R., Bastide, Y., & Lakhal, L., Conceptual Clustering with Iceberg Concept Lattices. Proceedings of GI-Fachgruppentreffen Maschinelles Lernen'01, Universitat Dortmund, 763, 2001.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N. & Lakhal, L., Computing iceberg concept lattices with TITANIC. Data and Knowledge Engineering, 42(2), 189-222, 2002.
    Wehrend, S. & Lewis, C., A Problem-oriented Classification of Visualization Techniques. Proceedings of the First IEEE Conference Visualization - Visualization 90, 139-143, 1990.
    Wille, R., Restructuring lattice theory: an approach base on hierarchies of concepts. Ordered Sets, Boston: Dordrecht Reidel Publishing Co., 445-470, 1982.
    Xiang, Y., Chau, M., Atabakhsh, H. & Chen, H., Visualizing Criminal Relationships: Comparison of a Hyperbolic Tree and a Hierarchical List. Decision Support Systems, 41, 69-83, 2005
    Zhao, R., Grosky, W. I., Narrowing the Semantic Gap – Improved Text-Based Web Document Retrieval Using Visual Features. IEEE Transactions on Multimedia, 4(2), 189-200, 2002.

    下載圖示 校內:2013-08-27公開
    校外:2013-08-27公開
    QR CODE