簡易檢索 / 詳目顯示

研究生: 林俊利
Lin, Jiun-Li
論文名稱: 運作溫度與外在施力並行考慮之軟性電路元件擺放演算法
A Novel Cell Placement Algorithm for Flexible TFT Circuit with Mechanical Strain and Temperature Consideration
指導教授: 何宗易
Ho, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 37
中文關鍵詞: 軟性電路薄膜電晶體元件擺放演算法載流子遷移率電路熱能電路 外在施力
外文關鍵詞: Flexible Circuit, TFT, Placement, Mobility, Heat, Mechanical Strain
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 載流子遷移率是為影響薄膜電晶體軟性電路效能好壞之重要因素,其值非常容易受外在施力以及電路運作溫度影響。因此在設計薄膜電晶體之軟性電路時,外在施力與電路運作溫度為不可或缺的思考因素。然而目前針對設計薄膜電晶體之軟性電路的現有擺放演算法,僅僅在元件擺放時考慮外在施力的因素而未將電路運作時的溫度影響列入考慮。缺乏了對於電路運作溫度考慮下的元件擺放演算法,將容易使得載流子遷移率在電路運作時發生大幅度的變化進而導致整體電路效能下降。因此,這篇論文中我們提出了第一個同時針對運作溫度與外在施力並行考慮之軟性電路元件擺放演算法,藉此來降低電路中載流子遷移率之變化率。其中我們同時提出以線性規劃以及以最小權重最大流演算法將影響載流子遷移率最巨之關鍵元件分散擺放。由實驗結果顯示,我們的演算法可以比以往僅考慮外在施力的擺放演算法更進一步的降低載流子遷移率。

    Mobility is the primary device parameter affecting circuit performance in flexible thin- film transistor (TFT) technologies, and is particularly sensitive to the change of mechanical strain and temperature. However, existing algorithms only consider the effect of mechanical strain in cell placement of flexible TFT circuit. Without taking temperature into consideration, mobility may be dramatically decreased which leads to circuit performance degradation. This thesis presents the first work to minimize the mobility variation caused by the change of both mechanical strain and temperature. Experimental results show that the proposed algorithms can effectively and efficiently reduce the mobility variation.

    Table of Contents vii List of Tables viii List of Figures ix 1 Introduction 1 1.1 PreviousWork ............................. 6 1.1.1 FlexiPlace: Simulated Annealing-Based Flexible TFT Circuit Placement Optimization................. . 6 1.1.2 Static Timing Analysis for FlexibleTFT . . . . . . . . . . . 8 1.2 OurContributions ........................... 10 2 Algorithm 12 2.1 StaticTimingAnalysis......................... 12 2.1.1 InitialStaticTimingAnalysis ................. 13 2.1.2 Static Timing Analysis with Mobility Consideration . . . . . 15 2.2 Thermal-aware Non-critical Cell Distribution . . . . . . . . . . . . . 16 2.3 CriticalCellDistribution........................ 17 2.3.1 ILP-basedCriticalCellDistribution. . . . . . . . . . . . . . 18 2.3.2 MCMF-based Critical Cell Distribution . . . . . . . . . . . . 21 2.4 MultilevelGlobalPlacement...................... 24 2.5 Row-basedDetailPlacement...................... 26 3 Experimental Results 28 4 Conclusion 32 Bibliography 33

    [1] http://lava.cs.virginia.edu/HotSpot.
    [2] http://www-01.ibm.com/software/integration/optimization/
    cplex-optimizer/.
    [3] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw. A 13.56- MHz RFID system based on organic transponders. IEEE Journal of Solid- State Circuits, 42(1):84–92, jan. 2007.
    [4] J. H. Cheon, J. H. Bae, and J. Jann. Mechanical stability of poly-Si TFT on metal foil. In Solid-State Electronics, pages 473–477, 2008.
    [5] V. Da Costa and R. Martin. Amorphous silicon shift register for addressing output drivers. Solid-State Circuits, IEEE Journal of, 29(5):596–600, 1994.
    [6] A. Dasdan and I. Hom. Handling inverted temperature dependence in static timing analysis. ACM Transactions on Design Automation of Electronic Sys- tems, 11(2):306–324, April 2006.
    [7] H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo. Electrical response of amorphous silicon thin-film transistors under mechanical strain. Journal of Applied Physics, (92):6224–6229, 2002.
    [8] C. H. Hsu. A static timing analyzer for flexible tft circuits. Master’s thesis, 2009.
    [9] C.-H. Hsu, C. Liu, E.-H. Ma, and J. C.-M. Li. Static timing analysis for flexible TFT circuits. In Proceedings of the 47th Design Automation Conference, pages 799–802, 2010.
    [10] K. Ishida, N. Masunaga, R. Takahashi, T. Sekitani, S. Shino, U. Zschieschang, H. Klauk, M. Takamiya, T. Someya, and T. Sakurai. User customizable logic paper (uclp) with sea-of transmission-gates (sotg) of 2-v organic cmos and ink- jet printed interconnects. Solid-State Circuits, IEEE Journal of, 46(1):285– 292, 2011.
    [11] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan. Flexible electronics and displays: High-resolution, roll-to-roll, projection lithography and photoabla- tion processing technologies for high-throughput production. Proceedings of the IEEE, 93(8):1500–1510, 2005.
    [12] N. Karaki, T. Nanmoto, H. Ebihara, S. Utsunomiya, S. Inoue, and T. Shi- moda. A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon TFT technology. In Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, pages 272–598, 2005.
    [13] G. Karypis and V. Kumar. hMETIS: A Hypergraph Partitioning Package. http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download, 1999.
    [14] S. H. Kwon, S. G. Lee, W. K. Cho, B. G. Ryu, and M.-B. Song. Flexible paper-like display using charged polymer particles. In Proceedings of Society for Information Display, pages 1838–1840, 2006.
    [15] B. Lee, Y. Hirayama, Y. Kubota, S. Imai, A. Imaya, M. Katayama, K. Kato, A. Ishikawa, T. Ikeda, Y. Kurokawa, T. Ozaki, K. Mutaguch, and S. Ya- mazaki. A cpu on a glass substrate using cg-silicon tfts. In Solid-State
    Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, pages 164–165 vol.1, 2003.
    [16] W.-H. Liu, E.-H. Ma, W.-E. Wei, and J. C.-M. Li. Placement optimization of flexible TFT digital circuits. IEEE Design Test of Computers, 28(6):24–31, November 2011.
    [17] N. Munzenrieder, K. H. Cherenack, and G. Troster. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Transactions on Electron Devices, 58(7):2041–2048, July 2011.
    [18] R. A. Rutenbar. Simulated annealing algorithms: An overview. Circuits and Devices Magazine, IEEE, 5(1):19–26, 1989.
    [19] A. Sazonov, D. Striakhilev, C.-H. Lee, and A. Nathan. Low-temperature materials and thin film transistors for flexible electronics. Proceedings of the IEEE, 93(8):1420–1428, August 2005.
    [20] T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, and T. Sakurai. Ultra- flexible organic field-effect transistors embedded at a neutral strain position. In Applied Physics Letters, volume 87, pages 1–3, Oct. 2005.
    [21] P. Servati and A. Nathan. Modeling of the reverse characteristics of a-si:h tfts. Electron Devices, IEEE Transactions on, 49(5):812–819, 2002.
    [22] M. W. Shin and S. H. Jang. Thermal analysis of active layer in organic thin-film transistors. Organic Electronics, 13(5):767–770, 2012.
    [23] W. S. Wong and A. Salleo. Flexible electronics: materials and applications. Springer-Verlag, 2009.
    35
    [24] Y.-H. Yeh, C.-C. Cheng, K.-Y. Ho, P.-C. Chen, M. H. Lee, J.-J. Huang, H.-L. Tyan, C.-M. Leu, C.-S. Chang, and K.-C. Lee. 7-inch color VGA flexible TFT LCD on colorless polyimide substrate with 200oC a-Si:H TFTs. In Proceedings of Society for Information Display, pages 1677–1679, 2007.
    [25] L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. Jackson. All-organic active matrix flexible display. Applied Physics Letters, 88(8):083502–083502– 3, 2006.
    [26] M. Zhu, G. Liang, T. Cui, and K. Varahramyan. Temperature and field depen- dent mobility in pentacene-based thin film transistors. Solid-State Electronics, 49(6):884–888, 2005.

    無法下載圖示 校內:2018-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE