| 研究生: |
蘇楠迪 Su, Nan-Ti |
|---|---|
| 論文名稱: |
控制ZIFs/silicate材料中ZIFs晶體尺度與CO2吸附之研究 Control on ZIFs Crystal Size in the ZIFs/silicate for CO2 Adsorption |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 氣體擴散 、晶體大小 、金屬矽酸鹽 、ZIFs/矽酸鹽 、二氧化碳吸附劑 |
| 外文關鍵詞: | diffusion-limit, crystal size, metal-silicate, ZIFs/silicate, CO2 adsorption capability |
| 相關次數: | 點閱:152 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是以控制ZIFs crystals的顆粒大小為目標,讓ZIFs crystals的粒徑在次微米或奈米的尺度,降低氣體在微孔材料的擴散限制,因此本研究利用metal-silicate為原料:當metal-silicate與配位基存在於適當的反應環境下,配位基會從metal-silicate中溶出金屬離子,並藉由孔洞氧化矽結構的存在,讓ZIFs crystals傾向藉由異相成核的方式生成,促使ZIFs crystals在原位生長和限制ZIFs crystals的顆粒大小,進而控制ZIFs crystals的顆粒和提高其分散性,增加ZIFs/silicate的均一度,提高二氧化碳的吸附效率,使ZIFs/silicate成為優良的二氧化碳吸附劑。
製作Zn-silicate前驅物是採取異相成核法的概念,在pH8.0和水熱溫度為100oC的水熱反應條件下來達成Zn(OH)2與SiO2之間的重組,接著將Zn-silicate與2-methylimidazole在乙醇中進行迴流,藉此來促進2-methylimidazole與Zn2+螯合,生成具有高表面積(約500 m2 g-1)和熱穩定性佳(約450oC)的ZIF-8/silicate,而在ZIF-8/silicate中的ZIF-8 crystals大小約240 nm、呈現高的結晶度,製作的ZIF-8/silicate具有高二氧化碳的吸附力(0.530 mmol g-1)。
以相同的合成法製作Co-silicate前驅物,只是需要調高反應溶液至pH9.0才能達成Co(OH)2與SiO2之間的重組,接著將Co-silicate與Benzimidazole在乙醇中進行迴流,就能形成高熱穩定性的ZIF-9/silicate,其ZIF-9 crystals具有強的結晶度,製作的ZIF-9/silicate具有高二氧化碳的吸附力(0.448 mmol g-1);若將Co-silicate與2-methylimidazole在水中室溫下反應,就會形成ZIF-67/silicate,其對二氧化碳的吸附力為0.439 mmol g-1。
To decrease diffusion-limit in microporous ZIFs crystals, the crystal size of ZIFs should be reduced to submicron- or nano-sized dimension. For this purpose, we use metal-silicate as metal ions precursor and imidazolate as linkers to prepare the ZIFs/silicate. To synthesize the ZIFs/silicate, an appropriate amount of wet metal-silicate was directly added into imidazolate solution, and then refluxed. In the presence of the silicate, the resulted ZIF-8 crystals size is about 240 nm, ZIF-9 crystals size is about 2 μm and ZIF-67 crystals size is about 60 nm. The ZIF-8/silicate has high surface area (the BET surface area ~ 500 m2 g-1) and high thermal stability (decomposition temperature ~ 450oC under N2 and air). The ZIF-9/silicate has high thermal stability as same as ZIF-8/silicate. Because of the low Co/Si mole ratio in the ZIF-67/silicate sample with high surface area and high thermal stability, the signal of ZIF-67 crystals is hard to be identified. All of these ZIFs/silicate demonstrate large CO2 adsorption capability, around 0.530 mmol g-1 at STP for ZIF-8/silicate, 0.448 mmol g-1 at STP for ZIF-9/silicate and 0.395 mmol g-1 at STP for ZIF-67/silicate at 60oC.
(1) D. H. Everett, Pure Appl. Chem. 1972, 31, 578
(2) Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi, Science 2013, 341, 974
(3) Shilun Qiu, Ming Xue, Guangshan Zhu, Chem. Soc. Rev. 2014, 43, 6116-6140
(4) David Danaci, Ranjeet Singh, Penny Xiao, Paul A. Webley, Chemical Engineering Journal 2015, 280, 486-493
(5) Kyo Sung Park, Zheng Ni, Adrien P. Côté, Jae Yong Choi, Rudan Huang, Fernando J. Uribe-Romo, Hee K. Chae, Michael O’Keeffe, Omar M. Yaghi, PNAS 2006, 103, 10186-10191
(6) Aleksandra Schejn, Lavinia Balan, Véronique Falk, Lionel Aranda, Ghouti Medjahdi, Raphaël Schneider, CrystEngComm 2014, 16, 4493
(7) Hui Wu, Wei Zhou, Taner Yildirim, J. AM. CHEM. SOC. 2007, 129, 5314-5315
(8) Binling Chen, Zhuxian Yang, Yanqiu Zhu, Yongde Xia, J. Mater. Chem. A 2014, 2, 16811
(9) Fernando Cacho-Bailo, Beatriz Seoane, Carlos Téllez, Joaquín Coronas, Journal of Membrane Science 2014, 464, 119–126
(10) Suresh Babu Kalidindi, Daniel Esken, Roland A. Fischer, Chem. Eur. J. 2011, 17, 6594-6597
(11) Wen-wen Zhan, Qin Kuang, Jian-zhang Zhou, Xiang-jian Kong, Zhao-xiong Xie, Lan-sun Zheng, J. Am. Chem. Soc. 2013, 135, 1926−1933
(12) Chun-Yi Sun, Chao Qin, Xin-Long Wang, Guang-Sheng Yang, Kui-Zhan Shao, Ya-Qian Lan, Zhong-Min Su, Peng Huang, Chun-Gang Wang, En-Bo Wang, Dalton Trans. 2012, 41, 6906–6909
(13) Li Sze Lai, Yin Fong Yeong, Noraishah Che Ani, Kok Keong Lau, Azmi Mohd Shariff, Particulate Science and Technology 2014, 32, 520-528
(14) Hye-Young Cho, Jun Kim, Se-Na Kim, Wha-Seung Ahn, Microporous and Mesoporous Materials 2013, 169, 180-184
(15) Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O’Keeffe, Omar M. Yaghi, Acc. Chem. Res. 2010, 43, 58–67
(16) Junfeng Qian, Fuan Sun, Lizhen Qin, Materials Letters 2012, 82, 220-223
(17) Cong Liu, Fuxing Sun, Shuyuan Zhou, Yuyang Tian, Guangshan Zhu, CrystEngComm, 2012, 14, 8365-8367
(18) Mónica Lanchas, Daniel Vallejo-Sánchez, Garikoitz Beobide, Oscar Castillo, Andrés T. Aguayo, Antonio Luquea, Pascual Román, Chem. Commun 2012, 48, 9930-9932
(19) Shunsuke Tanaka, Koji Kida, Takuya Nagaoka, Takehiro Ota, Yoshikazu Miyake, Chem. Commun, 2013, 49, 7884
(20) Pan Hu, Yefeng Yang, Yiyin Mao, Junwei Li, Wei Cao, Yulong Ying, Yu Liu, Jiahuan Leia, Xinsheng Peng, CrystEngComm, 2015, 17, 1576
(21) Helge Bux, Fangyi Liang, Yanshuo Li, Janosch Cravillon, Michael Wiebcke, Ju¨rgen Caro, J. AM. CHEM. SOC. 2009, 131, 16000-16001
(22) Sunghwan Park, Woo Ram Kang, Hyuk Taek Kwon, Soobin Kim, Myungeun Seo, Joona Bang, Sang hyup Lee, Hae Kwon Jeong, Jong Suk Lee, Journal of Membrane Science 2015, 486, 29-39
(23) R. A. Sheldon, M. Wallau, I. W. C. E. Arends, U. Schuchardt, Acc. Chem. Res. 1998, 31, 485
(24) A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers, E. Parisini, Angew. Chem. Int. Ed. 1997, 36, 1001
(25) R. Murugavel, H. W. Roesky, Angew. Chem. Int. Ed. 1997, 36, 477
(26) M. G. Clerici, G. Bellussi, U. Romano, J. Catal. 1991, 129, 159
(27) C . B. Dartt, C. B. Khouw, H. X. Li, M. E. Davis, Abstr. Pap. Am. Chem. S. 1993, 206, 57
(28) J. C. van der Waal, P. J. Kooyman, J. C. Jansen, H. van Bekkum, Micropor. Mesopor. Mat. 1998, 25, 43
(29) A. Corma, V. Fornes, M. T. Navarro, J. Perezpariente, J. Catal. 1994, 148, 569
(30) M. D. Alba, Z. H. Luan, J. Klinowski, J. Phys. Chem. 1996, 100, 2178
(31) R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba, J. Klinowski, Catal. Lett. 1996, 37, 113
(32) B. L. Newalkar, J. Olanrewaju, S. Komarneni, Chem. Mater. 2001, 13, 552
(33) D. R. Rolison, Science 2003, 299, 1698
(34) http://www.iza-structure.org/databases/
(35) Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng, G. H. Lee, Organometallics. 2004, 23, 95
(36) F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias, G. N. R. Filho, Micropor. Mesopor. Mat. 2008, 113, 562
(37) M. Plabst, L. B. McCusker, T. Bein, J. Am. Chem. Soc. 2009, 131, 18112
(38) M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 1989, 115, 301
(39) R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis, T. Klimova, J. Phys. Chem. B 2002, 106, 13287
(40) http://www.sccs.org.uk/
(41) http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
(42) H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, May 1974. 1974, 1, 992
(43) W. Bond, Acta Crystallographica, 1960, 13, 814-818
(44) A. Patterson, Physical review, 1939, 56, 978
(45) A. W. Burton, K. Ong, T. Rea, I. Y. Chan, Micropor. Mesopor. Mat. 2009, 117, 75-90
(46) U. Holzwarth, N. Gibson, Nature Nanotechnology, 2011, 6, 534-534
(47) A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız, M. Yalçın, J Colloid Interf Sci, 2004, 269, 310-314
(48) D. Langmuir, P. Hall, J. Drever, Environmental Geochemistry, Englewood Cliffs: Prentice-Hall, 1997
(49) O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek, A. Zukal, Journal of the Chemical Society, Chemical Communications 1993, 724-726
(50) 吳宇婷, 2014, 以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用。台南: 成功大學化學所。
(51) Huifeng Zhang, Defei Liu, Ying Yao, Baoquan Zhang, Y.S. Lin, Journal of Membrane Science 2015, 485, 103-111
(52) Koji Kida, Muneyuki Okita, Kosuke Fujita, Shunsuke Tanaka, Yoshikazu Miyakeab, CrystEngComm 2013, 15, 1794
(53) 王暐翔, 2015, 孔洞氧化矽、碳材@氧化矽及矽酸鈦複合材料的合成與應用。台南: 成功大學化學所。
(54) A. S. Munn, P. W. Dunne, S. V. Y. Tang, E. H. Lester, Chem. Commun. 2015, 51, 12811
(55) Srinivas Gadipelli, Will Travis, Wei Zhou, Zhengxiao Guo, Energy Environ. Sci. 2014, 7, 2232
(56) Pu Zhao, Thomas D. Bennett, Nicola P. M. Casati, Giulio I. Lampronti, Stephen A. Moggachd, Simon A. T. Redfern, Dalton Trans. 2015, 44, 4498
(57) Benoit Coasne, Julien Haines, Claire Levelut, Olivier Cambon, Mario Santoro, Federico Gorelli, Gaston Garbarino, Phys. Chem. Chem. Phys. 2011, 13, 20096-20099
(58) Julien Haines, Olivier Cambon, Claire Levelut, Mario Santoro, Federico Gorelli, Gaston Garbarino, J. AM. CHEM. SOC. 2010, 132, 8860-8861
(59) 洪維瑛, 2012, 利用水熱法製備Cobalt-Silicate和Nickel-Silicate孔洞複合性材料作為吸附劑和催化觸媒。台南: 成功大學化學所。
(60) Yong Pan, Hai Li, Xiao-Xin Zhang, Zhe Zhang, Xiong-Shi Tong, Chong-Zhi Jia, Bei Liu, Chang-Yu Sun, Lan-Ying Yang, Guang-Jin Chen, Chemical Engineering Science 2015, 137, 504-514