簡易檢索 / 詳目顯示

研究生: 黃韋旻
Huang, Wei-Ming
論文名稱: 以比濃度固有光學性質建立水庫水色及透明度模式之研究
Analysis of inherent optical properties and apparent optical properties in reservoirs for the simulation of water color and clarity
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 166
中文關鍵詞: 光學水質光學平衡生光模式澄清度模式水色模式
外文關鍵詞: OWQ, optical closure, BOM, clarity mode, water color model
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學水質(OWQ)為評估水體品質及價值最直接的方式,以顏色及透明度為最常見的光學水質,而瞭解水庫光學性質將有助於OWQ發展及應用。本研究根據透明度(SD)及葉綠素a(Chl-a)分類結果,調查2014年12月至2015年05月日月潭、南化、鯉魚潭及鳳山水庫的光學性質,包含固有光學性質(IOP)、外顯光學性質(AOP)及光敏活性物質(OAS)濃度,分析頻率為每月一次。IOP分析方面,以濾膜結凍轉移(FTF)結合穿透與反射法(TR法)量測顆粒吸收與背向散射係數、光譜儀分析光消係數及黃色物質(CDOM)吸收係數;AOP分析方面,以光譜儀搭配鏡頭量測水面反射率、光度計分析光衰減係數及沙奇盤量測透明度;OAS濃度分析方面,量測水體的溶解性有機物(DOC)、懸浮固體物(TSS)、非揮發性懸浮固體物(NVSS)、濁度及Chl-a。
    光學平衡方面,本研究評估現地量測AOP與根據實測IOP及背向散射比調整所計算之AOP間的光學閉鎖性,找出最穩定的背向散射比,分別為 0.14(日月潭水庫)、0.05(南化水庫)、0.06(鯉魚潭水庫)及0.20(鳳山水庫),分析結果顯示兩者光學特徵大致相符。
    根據濃度分析、IOP分析與光學平衡調校結果,本研究分別建立四水庫之生光模式(BOM),包含比單位固有光學特性(SIOP)與代表性光學模式,以利透明度及顏色模式建立。
    本研究以各水庫BOM建立水體澄清度與水色模式,以各水庫採樣期間進行透明度及水色模擬。透明度方面,以南化水庫模擬結果最佳(R=0.758)及鳳山水庫(R=0.419)模擬最差,調整最佳的透明度模式參數Γ,分別為5.76(日月潭水庫)、10.37(南化水庫)、7.71(鯉魚潭水庫)及6.51(鳳山水庫);水色方面,日月潭為綠色偏藍(DOC: 1.483~0.272 mg/L; SS: 3.96~0.06 mg/L; Chl-a: 1.80~0.02 μg/L);南化水庫為深綠色(DOC: 1.496~0.711 mg/L; SS: 15.2~1.02 mg/L; Chl-a: 13.6~0.60 μg/L);鯉魚潭水庫為淺綠色(DOC: 1.022~0.604 mg/L; SS: 4.90~0.70 mg/L; Chl-a: 3.67~0.62 μg/L);鳳山水庫為褐黃土色及墨綠色為主(DOC: 4.995~2.462 mg/L; SS: 85.5~3.70 mg/L; Chl-a: 78.5~2.68 μg/L)。水色模擬結果與現場拍攝之照片雖有些許差異,但足以區分出水庫的典型水色。利用環保署2005-2012年水庫水質季監測資料模擬水庫透明度與重建水色,結果顯示本研究發展之水庫澄清度與水色模式可大致掌握各水庫透明度之季變化趨勢,模擬結果以鯉魚潭水庫最佳(R=0.879),以鳳山水庫最差(R=0.643)。
    本研究發展之水庫澄清度與水色模式可與現有水庫水質模式結合,分析集水區污染物減量與光學水質間的量化關係,作為光學水質管理模式工具。

    Optical Water Quality (OWQ) is the most direct and easiest way to observe the water quality. However, unlike other water quality management has been developed many mode, OWQ management has been not yet haven a model with the physical mechanism, The objective of this study is to establish clarity and color model with the physical mechanism. First, according to the results of Secchi Depth (SD) and chlorophyll a (Chl-a) classification, this study picks up SunMoonlake Reservoir (SMR), NanHua Reservoir (NHR), LiYutan Reservoir (LYR) and FengShan Reservoir (FSR) to study. Second, the Apparent Optical Properties (AOPs), Inherent Optical Properties (IOPs) and Optically Active Substance (OAS) concentration were analyzed. Third, according to optical database collected from this study, Bio-Optical Model (BOM) is established. Forth, by BOM and Radiative Transfer Model (RTM), water clarity and color model are established. The results of this study show: (1) By optical closure with RTM, The best Backscattering ratio (B) is 0.14(SMR), 0.05(NHR), 0.06(LYR) and 0.20(FSR), (2) During sampling period, Γ is 5.76(SMR), 10.37(NHR), 7.71(LYR) and 6.5(FSR). Through using seasonal water quality data from EPA in Taiwan to simulate SD, the results show that Liyutan reservoir is best (R=0.879) and Fengshan reservoir is the worst (R=0.643). (3)For the simulation of color, it is feasible to distinguish typical color among reservoirs. By RTM, BOM and B established by this study can connect the clarity and color model and It can direct simulate water clarity and color without effects of the light field conditions and subjective effects from humans.

    摘要 I 致謝 VIII 目錄 X 表目錄 XIII 圖目錄 XV 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 5 1.3.1 水庫光學性質之量測及解析 5 1.3.2 以光學平衡確定量測結果 5 1.3.3 建立水庫生光模式 5 1.3.4 以生光資料建立透明度及顏色模式 5 1.4 論文架構 6 第二章 文獻回顧 8 2.1 光學性質之量測與生光資料庫 8 2.1.1 水質組成 10 2.1.2 固有光學性質(IOP)及量測 12 2.1.3 水中生光模式(BOM)與光截面性質 15 2.1.4 外顯光學性質(AOP)與光學水質(OWO) 28 2.1.5 光學平衡(optical closure) 37 2.2 水體光學性質分類及應用 39 2.3 透明度模式發展及應用 43 2.4 光學水質管理 45 第三章 研究材料與方法 48 3.1 研究區域篩選 48 3.2 水質分析 54 3.2.1 葉綠素a 54 3.2.2 溶解性有機碳 54 3.2.3 懸浮固體物 54 3.2.4 濁度 55 3.3 外顯光學性質分析 55 3.3.1. 輻照反射率(irradiance reflectance) 55 3.3.2. 光強度 58 3.3.3. 透明度 59 3.4 固有光學分析 60 3.4.1 FTR-TR分析顆粒光學特性:吸收係數及背向散射係數 60 3.4.2 光消系數(Beam attenuation) 68 3.4.3 有色溶解性有機物質的吸收(CDOM absorption) 69 3.4.4 數據修正及正規化處理 70 3.5 CIE color model轉換顏色 71 3.6 光學平衡 72 3.7 透明度模式 77 第四章 結果與討論 78 4.1 實驗及採樣結果 78 4.1.1 OAS濃度分析結果 78 4.1.2 IOP分析結果 83 4.1.3 AOP分析結果 92 4.2 以光學平衡評估穩定背向散射比 101 4.3 建立水庫生光模式 108 4.3.1 建立濃度與固有光學性質關係 108 4.3.2 建立水庫光學模式 117 4.4 以生光資料建立透明度及顏色模式 120 4.4.1 透明度模式門檻對比值(Γ)推估 125 4.4.2 水色模擬結果與現場照片比較 127 4.4.3 透明度及顏色模式應用:歷年透明度模擬及水庫水色重建 132 5.1 結論 142 5.2 建議 145 參考文獻 146 附錄 153

    Anon. (1966). The science of color. The Committee on Colorimetry of the Optical Society of America.
    Arst, H., & Arst, K. I. U. (2003). Optical properties and remote sensing of multicomponental water bodies: Springer Science & Business Media.
    Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A., & Virta, J. (2008). Optical properties of boreal lake waters in Finland and Estonia. Boreal environment research, 13(2), 133-158.
    Asmala, E., Stedmon, C. A., & Thomas, D. N. (2012). Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. Estuarine, Coastal and Shelf Science, 111, 107-117.
    Austin, R. W. (1974). The remote sensing of spectral radiance from below the ocean surface.
    Baban, S. M. J. (1996). Trophic classification and ecosystem checking of lakes using remotely sensed information. Hydrological Sciences Journal, 41(6), 939-957. doi: 10.1080/02626669609491560
    Boss, E., Slade, W. H., Behrenfeld, M., & Dall'Olmo, G. (2009). Acceptance angle effects on the beam attenuation in the ocean. Optics Express, 17(3), 1535-1550. doi: 10.1364/OE.17.001535
    Bricaud, A., Babin, M., Morel, A., & Claustre, H. (1995). Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research: Oceans, 100(C7), 13321-13332. doi: 10.1029/95JC00463
    Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1), 43-53. doi: 10.4319/lo.1981.26.1.0043
    Bukata, R. P. (2005). Satellite monitoring of inland and coastal water quality; retrospection, introspection, future direction. (Vol. 246): CRC Press.
    Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (1995). Optical properties and Remote Sensing of Inland and Coastal Waters.
    Butler, W. L. (1962). Absorption of Light by Turbid Materials. Journal of the Optical Society of America, 52(3), 292-299. doi: 10.1364/JOSA.52.000292
    Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361-369. doi: 10.4319/lo.1977.22.2.0361
    Chang, C.-H. (2008). 非點源污染負荷模式及水質生光模式之結合與應用. 成功大學. Available from Airiti AiritiLibrary database. (2008年)
    Chang, C.-H., Liu, C.-C., Chung, H.-W., Lee, L.-J., & Yang, W.-C. (2014). Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions. Applied Optics, 53(4), 605-617.
    Chang, C.-H., Liu, C.-C., Wen, C.-G., Cheng, I.-F., Tam, C.-K., & Huang, C.-S. (2009). Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery. Journal of Environmental Monitoring, 11(11), 1982-1992.
    Cheng, K. S., & Lei, T. C. (2001). RESERVOIR TROPHIC STATE EVALUATION USING LANISAT TM IMAGES1: Wiley Online Library.
    Davies-Colley, R. J., Vant, W. N., & Smith, D. G. (2003). Colour and Clarity of Natural Waters : Science and Management of Optical Water Quality.
    Dierssen, H. M., Kudela, R. M., Ryan, J. P., & Zimmerman, R. C. (2006). Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnology and Oceanography, 51(6), 2646-2659. doi: 10.4319/lo.2006.51.6.2646
    Duarte CM, K. J. (1989). The influence of catchment geology and lake depth on phytoplankton biomass. Archiv für Hydrobiologie.
    Duntley, S. Q. (1952). The Visibility of Submerged Objects.
    Foden, J., Sivyer, D. B., Mills, D. K., & Devlin, M. J. (2008). Spatial and temporal distribution of chromophoric dissolved organic matter (CDOM) fluorescence and its contribution to light attenuation in UK waterbodies. Estuarine, Coastal and Shelf Science, 79(4), 707-717. doi: http://dx.doi.org/10.1016/j.ecss.2008.06.015
    Gallegos, C. L., Correll, D. L., & Pierce, J. W. (1990). Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary. Limnology and Oceanography, 35(7), 1486-1502.
    Gallegos, C. L., Jordan, T. E., Hines, A. H., & Weller, D. E. (2005). Temporal variability of optical properties in a shallow, eutrophic estuary: Seasonal and interannual variability. Estuarine, Coastal and Shelf Science, 64(2–3), 156-170. doi: http://dx.doi.org/10.1016/j.ecss.2005.01.013
    Gallegos, C. L., Werdell, P. J., & McClain, C. R. (2011). Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements.
    Hakvoort, H., de Haan, J., Jordans, R., Vos, R., Peters, S., & Rijkeboer, M. (2002). Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 171-183. doi: http://dx.doi.org/10.1016/S0924-2716(02)00120-X
    Hoogenboom, H. J., & Dekker, A. G. (1997). Simulation of the medium-resolution imaging spectrometer (MERIS) performance for detecting chlorophyll-a over turbid inland waters.
    Iturriaga, R., & Siegel, D. A. (1989). Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea. Limnology and Oceanography, 34(8), 1706-1726. doi: 10.4319/lo.1989.34.8.1706
    Jerlov, N. G. (1976). Marine Optics (Elsevier Oceanography Series).
    Julian, J. P., Davies-Colley, R. J., Gallegos, C. L., & Tran, T. V. (2013). Optical Water Quality of Inland Waters: A Landscape Perspective. Annals of the Association of American Geographers, 103(2), 309-318. doi: 10.1080/00045608.2013.754658
    Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H., & Riggsbee, J. A. (2008). Optical water quality in rivers. Water Resources Research, 44(10), W10411. doi: 10.1029/2007WR006457
    Kirk, J. T. O. (1976). Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal south-eastern Australian waters.
    Kirk, J. T. O. (1982). Predictionof optical waterquality.
    Kirk, J. T. O. (1983a). Light and photosynthesis in aquatic ecosystems.–With 108 figs, 401 pp. Cambridge–London–New York: Cambridge University Press
    Kirk, J. T. O. (1983b). Light and Photosynthesis in Aquatic Ecosystems. Cambridge Univ. Press, Cambridge
    and New York. 401 p.
    Kirk, J. T. O. (1988). Optical water quality—What does it mean and how
    should we measure it? Water Pollut. Control Fed, 60, 194 – 197.
    Koenings, J. P., & Edmundson, J. A. (1991). Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity.
    Kopelevich, O. (1983). Small-Parameter Model of Optical Properties of Seawater, Chapter 8 in Ocean Optics, vol 1: Physical Ocean Optics: Moscow: Nauka Pub.
    Kutser, T., Herlevi, A., Kallio, K., & Arst, H. (2001). A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. Science of The Total Environment, 268(1–3), 47-58. doi: http://dx.doi.org/10.1016/S0048-9697(00)00682-3
    Lee, Z. (1994). VISIBLE-INFRARED REMOTE-SENSING MODEL. University of South Florida.
    Levin, I. M., & Radomyslskaya, T. M. (2012). Estimate of water inherent optical properties from Secchi depth. Izvestiya, Atmospheric and Oceanic Physics, 48(2), 214-221. doi: 10.1134/S0001433812020065
    Liu, C.-C., Chang, C.-H., Wen, C.-G., Huang, C.-H., Hung, J.-J., & Liu, J. T. (2009). Using satellite observations of ocean color to categorize the dispersal patterns of river-borne substances in the Gaoping (Kaoping) River, Shelf and Canyon system. Journal of Marine Systems, 76(4), 496-510.
    Maul, G. A. (1985). Introduction to Satellite Oceanography.
    Mitchell, B. G., Kahru, M., Wieland, J., & Stramska, M. (2002). Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean optics protocols for satellite ocean color sensor validation, Revision, 3, 231-257.
    Mobley, C. (2015, 2015/06/25). Overview of Optical Oceanography. from http://www.oceanopticsbook.info/view/overview_of_optical_oceanography/reflectances
    Mobley, C. D. (1994). Light and Water: Radiative Transfer in Natural Waters.
    Mobley, C. D., Sundman, L. K., Davis, C. O., Bowles, J. H., Downes, T. V., Leathers, R. A., . . . Reid, R. P. (2005). Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Applied Optics, 44(17), 3576-3592.
    Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of oceanography, 1, 1-24.
    Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709-722. doi: 10.4319/lo.1977.22.4.0709
    Mueller, J. L. (2003). Overview of Biogeochemical Measurements and Data
    Analysis in Ocean Color Research. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5,Volume 5.
    O'Donnell, D. M., Effler, S. W., Strait, C. M., & Leshkevich, G. A. (2010). Optical characterizations and pursuit of optical closure for the western basin of Lake Erie through in situ measurements. Journal of Great Lakes Research, 36(4), 736-746. doi: http://dx.doi.org/10.1016/j.jglr.2010.08.009
    Pérez, G. L., Lagomarsino, L., & Zagarese, H. E. (2013). Optical properties of highly turbid shallow lakes with contrasting turbidity origins: The ecological and water management implications. Journal of Environmental Management, 130(0), 207-220. doi: http://dx.doi.org/10.1016/j.jenvman.2013.09.001
    Pérez, G. L., Torremorell, A., Bustingorry, J., Escaray, R., Pérez, P., Diéguez, M., & Zagarese, H. (2010). Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica - Ecology and Management of Inland Waters, 40(1), 30-39. doi: http://dx.doi.org/10.1016/j.limno.2008.08.003
    Petzold, T. J., & Austin, R. W. (1968). An Underwater Transmissometer For Ocean Survey Work.
    Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380?700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710-8723. doi: 10.1364/AO.36.008710
    Preisendorfer, R. W. (1960). Application of Radiative Transfer Theory to Light Measurements in the Sea: Institut géographique national.
    Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926. doi: 10.4319/lo.1986.31.5.0909
    Prieur, L., & Sathyendranath, S. (1981). An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1. Limnology and Oceanography, 26(4), 671-689.
    Reinart, A., Paavel, B., Pierson, D., & Strombeck, N. (2004). Inherent and apparent optical properties of Lake Peipsi, Estonia. Boreal environment research, 9(5), 429-445.
    Sathyendranath, S., Lazzara, L., & Prieur, L. (1987). Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography, 32(2), 403-415. doi: 10.4319/lo.1987.32.2.0403
    Sipelgas, L., Arst, H., Kallio, K., Erm, A., Oja, P., & Soomere, T. (2003). Optical Properties of Dissolved Organic Matter in Finnish and Estonian Lakes (Vol. 34): IWA Publishing.
    Smith, R. C., Tyler, J. E., & Goldman, C. R. (1973). OPTICAL PROPERTIES AND COLOR OF LAKE TAHOE AND CRATER LAKE1. Limnology and Oceanography, 18(2), 189-199. doi: 10.4319/lo.1973.18.2.0189
    Swift, T., Perez-Losada, J., Schladow, S. G., Reuter, J., Jassby, A., & Goldman, C. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences, 68(1), 1-15. doi: 10.1007/s00027-005-0798-x
    Tassan, S., & Allali, K. (2002). Proposal for the simultaneous measurement of light absorption and backscattering by aquatic particulates. Journal of Plankton Research, 24(5), 471-479.
    Torremorell, A., Bustigorry, J., Escaray, R., & Zagarese, H. E. (2007). Seasonal dynamics of a large, shallow lake, laguna Chascomús: The role of light limitation and other physical variables. Limnologica - Ecology and Management of Inland Waters, 37(1), 100-108. doi: http://dx.doi.org/10.1016/j.limno.2006.09.002
    Tyler, J. E. (1968). THE SECCHI DISC. Limnology and Oceanography, 13(1), 1-6. doi: 10.4319/lo.1968.13.1.0001
    Tyler, J. E. (1973). Applied radiometry. Oceanography and marine biology annual review 11:25.
    Tzortziou, M., Herman, J. R., Gallegos, C. L., Neale, P. J., Subramaniam, A., Harding Jr, L. W., & Ahmad, Z. (2006). Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuarine, Coastal and Shelf Science, 68(1–2), 348-362. doi: http://dx.doi.org/10.1016/j.ecss.2006.02.016
    Werdell, P. J. (2005). An evaluation of Inherent Optical Property data for inclusion in the NASA bio-Optical Marine Algorithm Data set. NASA Ocean Biology Processing Group, Science Systems and Applications, Inc. Document Version, 1.
    Wetzel, R. G. (2001). Limnology: lake and river ecosystems: Gulf Professional Publishing.
    劉正千, 張智華, 許華宇, 譚子健, & 溫清光. (2007). 應用ISIS高頻譜光學遙測影像於曾文水庫之水質監測 科儀新知 (pp. 161:129-142).
    楊大慶. (2013). 三種淡水藻固有光學性質分析及水色模擬之研究. (碩士), 成功大學, 台南市.
    黃慶祥. (2006). 水庫水質與光學性質模式之建立及其應用. (碩士), 成功大學, 台南市.

    下載圖示 校內:2020-09-04公開
    校外:2020-09-04公開
    QR CODE