簡易檢索 / 詳目顯示

研究生: 楊淑如
Yang, Shu-Ru
論文名稱: 探討內質網壓力在佛波脂誘導巨核細胞分化過程中所扮演的角色
The role of ER stress in PMA-induced megakaryocyte differentiation
指導教授: 簡偉明
Kan, Wai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 巨核細胞分化內質網壓力
外文關鍵詞: megakaryocyte, differentiation, ER stress
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巨核細胞可以產生血小板並在受傷的血管部位進行凝集而達到止血的功能,而巨核細胞是經由造血幹細胞所分化而來,而在此分化過程中,活性氧物質(reactive oxygen species, ROS)與自體吞噬(autophagy)都被認為是必要的影響因子。另一方面,研究指出ROS的產生與autophagy的形成,內質網壓力都有直接的相關性。此外,內質網壓力不管在漿細胞分化或是T淋巴球發展皆參與在其中。然而,在巨核細胞分化過程中,內質網壓力是否參與在其中,仍沒有研究進行探討。利用PMA誘導K562分化是常用於研究巨核細胞分化的細胞模組,所以在本實驗中,我們研究在PMA誘導K562分化成具有巨核細胞特性的過程,內質網壓力在其中所扮演的角色。一開始,我們發現PMA處理過後的K562可以表現巨核細胞特有的細胞表面醣蛋白CD61與CD42b,並也觀察到巨核細胞分化過程會進行的DNA多倍化。進一步地,我們也發現K562分化過程伴隨著ROS的產生與autophagy的形成。接著,我們發現XBP1 splicing的現象出現,可以證實內質網壓力的確存在於巨核細胞分化。而如果我們抑制XBP1上游IRE1 RNase的活性後,可以觀察到CD61與CD42b的表現下降,DNA多倍化也有被抑制。不僅如此,IRE1 RNase的活性抑制後,ROS與autophagy的表現也是下降的。最後我們發現,當加入MEK1/2抑制劑的時候,XBP1 splicing會有減少的現象。綜合以上,我們的研究指出ERK1/2在內質網壓力的上游,且內質網壓力會藉由調控ROS與autophagy來影響巨核細胞分化的進行。

    Platelets are produced from megakaryocyte fragmentation which is crucial for blood coagulation. When hematopoietic stem cells differentiate into megakaryocytes, reactive oxygen species (ROS) and autophagy are essential. On the other hand, endoplasmic reticulum (ER) stress is important for ROS generation and autophagy induction. In addition, ER stress is involved in plasma cell differentiation and T cell development. However, it is still unclear about the role of ER stress in megakaryocyte differentiation. K562 is often used as a cell model for megakaryocyte differentiation study when treated with phorbol ester. In this study, we studied the role of ER stress in PMA-induced K562 differentiation. First, we observed that PMA induced megakaryocyte specific surface marker (CD61, CD42b) expression and DNA polyploidy in K562 cells. Moreover, PMA augmented the production of ROS and increased the expression of autophagy marker, LC3II. Second, we found XBP1 splicing after K562 cells were treated with PMA suggesting ER stress was involved. When IRE1-XBP1 was inhibited, the PMA-induced DNA polyploidy and megakaryocyte surface markers expression were decreased in K562 cells. Furthermore, inhibition of IRE-XBP1 also reduced the production of ROS and the expression of LC3II by PMA. Finally, we observed that XBP1 splicing was decreased by MEK1/2 inhibitors. In summary, our results indicate that the ERK1/2 is an upstream regulator of ER stress and the ER stress affects megakaryocyte differentiation through regulating ROS and autophagy.

    口試合格證明……………………………………………………………………I 摘要………………………………………………………………………………II 英文衍伸摘要……………………………………………………………………III 誌謝………………………………………………………………………………X 目錄………………………………………………………………………………XI 圖目錄……………………………………………………………………………XII 縮寫表……………………………………………………………………………XIV 第一章、緒論……………………………………………………………………1 第二章、材料與方法……………………………………………………………13 第三章、實驗結果………………………………………………………………22 第四章、討論……………………………………………………………………27 第五章、結論……………………………………………………………………32 參考文獻…………………………………………………………………………33 附錄………………………………………………………………………………44

    Bhandary, B., Marahatta, A., Kim, H.R. and Chae, H.J., 2012. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14, 434-56.
    Blumberg, P.M., 1988. Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res 48, 1-8.
    Brunsing, R., Omori, S.A., Weber, F., Bicknell, A., Friend, L., Rickert, R. and Niwa, M., 2008. B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem 283, 17954-61.
    Brush, M.H., Weiser, D.C. and Shenolikar, S., 2003. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23, 1292-303.
    Ce´ lio X. C. Santos, L.Y.T., Joa˜o Wosniak, Jr., and Francisco R. M. Laurindo, 2009. Mechanisms and Implications of Reactive Oxygen Species Generation During the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport, and NADPH Oxidase. Antioxid Redox Signal 11, 2409-2427.
    Celli, A., Mackenzie, D.S., Crumrine, D.S., Tu, C.L., Hupe, M., Bikle, D.D., Elias, P.M. and Mauro, T.M., 2011. Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J Dermatol 164, 16-25.
    Chakravarthi, S., Jessop, C.E. and Bulleid, N.J., 2006. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7, 271-5.
    Chen, P., Cescon, M. and Bonaldo, P., 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10, 192-200.
    Chen, S., Su, Y. and Wang, J., 2013. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis 4, e722.
    Chen, Y., Azad, M.B. and Gibson, S.B., 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040-52.
    Chiribau, C.B., Gaccioli, F., Huang, C.C., Yuan, C.L. and Hatzoglou, M., 2010. Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 30, 3722-31.
    Conde, I., Pabon, D., Jayo, A., Lastres, P. and Gonzalez-Manchon, C., 2010. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 84, 430-40.
    Cornejo, M.G., Mabialah, V., Sykes, S.M., Khandan, T., Lo Celso, C., Lopez, C.K., Rivera-Munoz, P., Rameau, P., Tothova, Z., Aster, J.C., DePinho, R.A., Scadden, D.T., Gilliland, D.G. and Mercher, T., 2011. Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 118, 1264-1273.
    Dames, S.A., Mulet, J.M., Rathgeb-Szabo, K., Hall, M.N. and Grzesiek, S., 2005. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280, 20558-64.
    Folkman, J., 2007. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273-86.
    Goldfarb, A.N., 2007. Transcriptional control of megakaryocyte development. Oncogene 26, 6795-802.
    Gomez, B.P., Riggins, R.B., Shajahan, A.N., Klimach, U., Wang, A., Crawford, A.C., Zhu, Y., Zwart, A., Wang, M. and Clarke, R., 2007. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J 21, 4013-27.
    Han, D., Lerner, A.G., Vande Walle, L., Upton, J.P., Xu, W., Hagen, A., Backes, B.J., Oakes, S.A. and Papa, F.R., 2009. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562-75.
    Harding, H.P., Zhang, Y. and Ron, D., 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-4.
    Hassler, J., Cao, S.S. and Kaufman, R.J., 2012. IRE1, a double-edged sword in pre-miRNA slicing and cell death. Dev Cell 23, 921-3.
    Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K., 1999. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787-99.
    Hetz, C., 2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89-102.
    Hozumi Motohashi, Momoko Kimura, Rie Fujita, Ai Inoue, Xiaoqing Pan, Mariko Takayama, Fumiki Katsuoka, Hiroyuki Aburatani, Emery H. Bresnick and Yamamoto, M., 2010. NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood 115, 677-686.
    Ioanna Papandreou, N.C.D., Michael Olson, Heleen Van Melckebeke, Sofie Lust, Arvin Tam, David E. Solow-Cordero, Donna M. Bouley, Fritz Offner, Maho Niwa and Albert C. Koong, 2011. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311-1314.
    Jose J. Lopez, A.P., Chiraz Chaabane, Letizia Albarran, Evelyne Polidano,Kristell Lebozec, Saoussen Dally, Paquita Nurden, Jocelyne Enouf, Najet Debili, Régis Bobe, 2013. Crucial Role for Endoplasmic Reticulum Stress During Megakaryocyte Maturation. Arterioscler Thromb Vasc Biol. 33, 2750-8.
    Kacena, M.A., Gundberg, C.M. and Horowitz, M.C., 2006. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39, 978-84.
    Kaufman, R.J., Scheuner, D., Schroder, M., Shen, X., Lee, K., Liu, C.Y. and Arnold, S.M., 2002. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3, 411-21.
    Kirito, K., 2002. A functional role of Stat3 in in vivo megakaryopoiesis. Blood 99, 3220-3227.
    Laurindo, F.R., Araujo, T.L. and Abrahao, T.B., 2014. Nox NADPH Oxidases and the Endoplasmic Reticulum. Antioxid Redox Signal.
    Lee, A.H., Scapa, E.F., Cohen, D.E. and Glimcher, L.H., 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492-6.
    Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N. and Lee, S.Y., 2005. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-9.
    Lepage, A., Leboeuf, M., Cazenave, J.P., de la Salle, C., Lanza, F. and Uzan, G., 2000. The alpha(IIb)beta(3) integrin and GPIb-V-IX complex identify distinct stages in the maturation of CD34(+) cord blood cells to megakaryocytes. Blood 96, 4169-77.
    Lerner, A.G., Upton, J.P., Praveen, P.V., Ghosh, R., Nakagawa, Y., Igbaria, A., Shen, S., Nguyen, V., Backes, B.J., Heiman, M., Heintz, N., Greengard, P., Hui, S., Tang, Q., Trusina, A., Oakes, S.A. and Papa, F.R., 2012. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16, 250-64.
    Liu, Y., Adachi, M., Zhao, S., Hareyama, M., Koong, A.C., Luo, D., Rando, T.A., Imai, K. and Shinomura, Y., 2009. Preventing oxidative stress: a new role for XBP1. Cell Death Differ 16, 847-57.
    Long, M.W., Heffner, C.H., Williams, J.L., Peters, C. and Prochownik, E.V., 1990. Regulation of megakaryocyte phenotype in human erythroleukemia cells. J Clin Invest 85, 1072-84.
    Luo, B. and Lee, A.S., 2013. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32, 805-18.
    Martinon, F., Chen, X., Lee, A.H. and Glimcher, L.H., 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11, 411-8.
    Ogura, M., Morishima, Y., Okumura, M., Hotta, T., Takamoto, S., Ohno, R., Hirabayashi, N., Nagura, H. and Saito, H., 1988. Functional and morphological differentiation induction of a human megakaryoblastic leukemia cell line (MEG-01s) by phorbol diesters. Blood 72, 49-60.
    Ono, S.J., Liou, H.C., Davidon, R., Strominger, J.L. and Glimcher, L.H., 1991. Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos. Proc Natl Acad Sci U S A 88, 4309-12.
    Pascal Colosetti, A.P., , Guillaume Robert, Fréderic Luciano, Arnaud Jacquel, Pierre Gounon,Jill-Patrice Cassuto and Patrick Auberger, 2009. Autophagy is involved in megakaryocytic differentiation of K562 CML cells. Autophagy 5, 1092-1098.
    Ravid, K., Lu, J., Zimmet, J.M. and Jones, M.R., 2002. Roads to polyploidy: the megakaryocyte example. J Cell Physiol 190, 7-20.
    Reimold, A.M., Iwakoshi, N.N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E.M., Friend, D., Grusby, M.J., Alt, F. and Glimcher, L.H., 2001. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300-7.
    Roman Herrera, Susan Hubbell, Stuart Decker and Petruzzelli, L., 1998. A Role for the MEK MAPK Pathway in PMA-Induced Cell Cycle Arrest : Modulation of Megakaryocytic Differentiation of K562 Cells. Exp Cell Res 238, 407-414.
    Roth, B.J., Sledge, G.W., Jr., Straneva, J.E., Brandt, J., Goheen, M. and Hoffman, R., 1988. Analysis of phorbol ester stimulated human megakaryocyte development. Blood 72, 202-7.
    Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., Cavener, D.R. and Imaizumi, K., 2011. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem 286, 4809-18.
    Sardina, J.L., Lopez-Ruano, G., Sanchez-Abarca, L.I., Perez-Simon, J.A., Gaztelumendi, A., Trigueros, C., Llanillo, M., Sanchez-Yague, J. and Hernandez-Hernandez, A., 2010. p22phox-dependent NADPH oxidase activity is required for megakaryocytic differentiation. Cell Death Differ 17, 1842-54.
    Sardina, J.L., Lopez-Ruano, G., Sanchez-Sanchez, B., Llanillo, M. and Hernandez-Hernandez, A., 2012. Reactive oxygen species: are they important for haematopoiesis? Crit Rev Oncol Hematol 81, 257-74.
    Sauer, H., Rahimi, G., Hescheler, J. and Wartenberg, M., 2000. Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476, 218-23.
    Schonwasser, D.C., Marais, R.M., Marshall, C.J. and Parker, P.J., 1998. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18, 790-8.
    Sciarretta, S., Zhai, P., Shao, D., Zablocki, D., Nagarajan, N., Terada, L.S., Volpe, M. and Sadoshima, J., 2013. Activation of NADPH Oxidase 4 in the Endoplasmic Reticulum Promotes Cardiomyocyte Autophagy and Survival During Energy Stress Through the Protein Kinase RNA-Activated-Like Endoplasmic Reticulum Kinase/Eukaryotic Initiation Factor 2alpha/Activating Transcription Factor 4 Pathway. Circ Res 113, 1253-64.
    Severin, S., Ghevaert, C. and Mazharian, A., 2010. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 8, 17-26.
    Shaffer, A.L., Shapiro-Shelef, M., Iwakoshi, N.N., Lee, A.H., Qian, S.B., Zhao, H., Yu, X., Yang, L., Tan, B.K., Rosenwald, A., Hurt, E.M., Petroulakis, E., Sonenberg, N., Yewdell, J.W., Calame, K., Glimcher, L.H. and Staudt, L.M., 2004. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81-93.
    Shelly, C., Petruzzelli, L. and Herrera, R., 1998. PMA-induced phenotypic changes in K562 cells: MAPK-dependent and -independent events. Leukemia 12, 1951-61.
    Shen, W.L., Gao, P.J., Che, Z.Q., Ji, K.D., Yin, M., Yan, C., Berk, B.C. and Zhu, D.L., 2006. NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 339, 337-43.
    Sungaran, R., Markovic, B. and Chong, B.H., 1997. Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89, 101-7.
    Szalai, G., LaRue, A.C. and Watson, D.K., 2006. Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci 63, 2460-76.
    Tay, K.H., Luan, Q., Croft, A., Jiang, C.C., Jin, L., Zhang, X.D. and Tseng, H.Y., 2014. Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal 26, 287-94.
    Travers, K.J., Patil, C.K., Wodicka, L., Lockhart, D.J., Weissman, J.S. and Walter, P., 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-58.
    Tsatmali, M., Walcott, E.C., Makarenkova, H. and Crossin, K.L., 2006. Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 33, 345-57.
    Upton, J.P., Wang, L., Han, D., Wang, E.S., Huskey, N.E., Lim, L., Truitt, M., McManus, M.T., Ruggero, D., Goga, A., Papa, F.R. and Oakes, S.A., 2012. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818-22.
    Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D., 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-6.
    Vidal, R.L. and Hetz, C., 2013. Unspliced XBP1 controls autophagy through FoxO1. Cell Res 23, 463-4.
    Wang, K., Niu, J., Kim, H. and Kolattukudy, P.E., 2011. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol 3, 360-8.
    Weissman, I.L. and Shizuru, J.A., 2008. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112, 3543-53.
    Weyrich, A.S. and Zimmerman, G.A., 2013. Platelets in lung biology. Annu Rev Physiol 75, 569-91.
    Yin He, S.S., Haibo Sha, Ziying Liu, Liu Yang, Zhen Xue, Hui Chen, and Ling Qi, 2010. Emerging roles for XBP1, a sUPeR transcription factor. Gene Expr 15, 13–25.
    Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M., 2001. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276, 13935-40.
    Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K., 2000. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20, 6755-67.
    Younce, C. and Kolattukudy, P., 2012. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 30, 307-20.
    Yuan, J., Yu, M., Li, H.H., Long, Q., Liang, W., Wen, S., Wang, M., Guo, H.P., Cheng, X. and Liao, Y.H., 2014. Autophagy contributes to IL-17-induced plasma cell differentiation in experimental autoimmune myocarditis. Int Immunopharmacol 18, 98-105.
    Zhao, Y., Li, X., Cai, M.Y., Ma, K., Yang, J., Zhou, J., Fu, W., Wei, F.Z., Wang, L., Xie, D. and Zhu, W.G., 2013. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res 23, 491-507.

    下載圖示 校內:2019-07-21公開
    校外:2019-07-21公開
    QR CODE