| 研究生: |
陳浩民 Chen, Hao-Min |
|---|---|
| 論文名稱: |
探討Egr-1在硫酸葡聚糖鈉鹽誘發的發炎性腸道疾病致病機轉 The role of early growth response-1 (Egr-1) in the pathogenesis of dextran sulfate-induced inflammatory bowel disease |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 發炎性腸道疾病 、克隆氏症 、潰瘍性結腸炎 |
| 外文關鍵詞: | inflammatory bowel disease, IBD, ulcerative colitis, Egr1, matrix metalloproteinase |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發炎性腸道疾病(inflammatory bowel disease, IBD)是一在大腸和小腸有發炎情形的疾病,主要有克隆氏症及潰瘍性結腸炎兩種類型。研究顯示患有IBD的病人是形成大腸癌的高危險群。Early growth response-1(Egr1)是一種具有轉錄因子功能的核蛋白,而且已知EGR1會調控許多基因的表現,參與像是細胞的生長、增生以及分化。先前的研究指出IBD和嚴重的發炎情形有關。而這當中形成的致病機制卻還不是很清楚。 在這篇研究主要目的要去探討Egr1在IBD致病機轉中所扮演的角色。首先,利用免疫墨點分析法及免疫組織化學染色可以發現Egr1會大量表現在硫酸葡聚糖鈉鹽(dextran sulfate sodium, DSS)誘導的形成IBD的小鼠中。接著在長期給予低劑量的DSS,Egr1剔除小鼠可以抵擋IBD的形成。此外,酶聯免疫吸附試驗和酶譜法的使用發現到發炎前驅細胞激素interleukin-1β和interleukin-6表現量會下降,而基質金屬蛋白酶也會隨之減少。我們也在MMP12的啟動子上預測到了Egr1可能的結合位置,接著從報導基因分析和染色質免疫沉澱分析可以得出Egr1確實會結合上MMP12的啟動子也會去調控其基因的表現。從上述實驗結果我們可以得知,Egr1在IBD中會參與發炎的過程,並且會去調控發炎相關因子進一步影響IBD的產生。
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine. Two major types of the disease are Crohn's disease and ulcerative colitis. People who suffer from long-term IBD are at a high risk for colorectal cancer. Early growth response-1 (Egr-1) is a nuclear protein and functions as a transcriptional regulator. It has been known that Egr-1 regulates the expression of many genes and is involved in cell growth, proliferation, and differentiation. Previous studies have shown that IBD is associated with severe inflammation. However, its exact mechanisms of disease pathogenesis remain unclear. The aim of this study way to investigate the role of Egr-1 in the pathogenesis of IBD. First, using immunoblot analysis and immunohistochemical staining, we found high levels of Egr-1 expression in the dextran sulfate sodium (DSS)-induced colitis mouse model. After chronic treatment with DSS, Egr-1 knockout mice were resistant to the development of IBD. Furthermore, enzyme-linked immunosorbent assay (ELISA) and zymographic analysis revealed that the expression levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α as well as matrix metalloproteinases (MMPs) decreased. Putative Egr-1 binding sites are present within the MMP12 promoter region. Through reporter assay and chromatin immunoprecipitation (ChIP) analysis, we demonstrated that Egr1 binds to MMP12 promoter and regulates the expression of MMP12. Based on the above data, I proposed that Egr-1 can participate in the process of inflammation and regulate other inflammation-related factors in IBD.
Baugh, M.D., Perry, M.J., Hollander, A.P., Davies, D.R., Cross, S.S., Lobo, A.J., Taylor, C.J., and Evans, G.S. (1999). Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 117, 814-822.
Baumgart, D.C., and Sandborn, W.J. (2007). Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641-1657.
Beaugerie, L., Svrcek, M., Seksik, P., Bouvier, A.M., Simon, T., Allez, M., Brixi, H., Gornet, J.M., Altwegg, R., Beau, P., et al. (2013). Risk of Colorectal High-Grade Dysplasia and Cancer in a Prospective Observational Cohort of Patients With Inflammatory Bowel Disease. Gastroenterology.
Chen, A., Xu, J., and Johnson, A.C. (2006). Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25, 278-287.
Christy, B., and Nathans, D. (1989). DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86, 8737-8741.
Dieckgraefe, B.K., and Weems, D.M. (1999). Epithelial injury induces egr-1 and fos expression by a pathway involving protein kinase C and ERK. Am J Physiol 276, G322-330.
Galis, Z.S., and Khatri, J.J. (2002). Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90, 251-262.
Gashler, A., and Sukhatme, V.P. (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50, 191-224.
Gitenay, D., and Baron, V.T. (2009). Is EGR1 a potential target for prostate cancer therapy? Future Oncol 5, 993-1003.
Hayden, D.M., Forsyth, C., and Keshavarzian, A. (2011). The role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states. J Surg Res 168, 315-324.
Hoffmann, E., Ashouri, J., Wolter, S., Doerrie, A., Dittrich-Breiholz, O., Schneider, H., Wagner, E.F., Troppmair, J., Mackman, N., and Kracht, M. (2008). Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 283, 12120-12128.
Howe, C.L., Mayoral, S., and Rodriguez, M. (2006). Activated microglia stimulate transcriptional changes in primary oligodendrocytes via IL-1beta. Neurobiol Dis 23, 731-739.
Hume, G., and Radford-Smith, G.L. (2002). The pathogenesis of Crohn's disease in the 21st century. Pathology 34, 561-567.
Kanamori, Y., Matsushima, M., Minaguchi, T., Kobayashi, K., Sagae, S., Kudo, R., Terakawa, N., and Nakamura, Y. (1999). Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res 59, 4225-4227.
Kaser, A., Zeissig, S., and Blumberg, R.S. (2010). Inflammatory bowel disease. Annu Rev Immunol 28, 573-621.
Kirkegaard, T., Hansen, A., Bruun, E., and Brynskov, J. (2004). Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn's disease. Gut 53, 701-709.
Korzenik, J.R., and Podolsky, D.K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 5, 197-209.
Macsharry, J., O'Mahony, L., Fanning, A., Bairead, E., Sherlock, G., Tiesman, J., Fulmer, A., Kiely, B., Dinan, T.G., Shanahan, F., et al. (2008). Mucosal cytokine imbalance in irritable bowel syndrome. Scand J Gastroenterol 43, 1467-1476.
Makitalo, L., Kolho, K.L., Karikoski, R., Anthoni, H., and Saarialho-Kere, U. (2010). Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scand J Gastroenterol 45, 862-871.
Manicone, A.M., and McGuire, J.K. (2008). Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19, 34-41.
Meijer, M.J., Mieremet-Ooms, M.A., van Duijn, W., van der Zon, A.M., Hanemaaijer, R., Verheijen, J.H., van Hogezand, R.A., Lamers, C.B., and Verspaget, H.W. (2007). Effect of the anti-tumor necrosis factor-alpha antibody infliximab on the ex vivo mucosal matrix metalloproteinase-proteolytic phenotype in inflammatory bowel disease. Inflamm Bowel Dis 13, 200-210.
Melgar, S., Karlsson, A., and Michaelsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 288, G1328-1338.
Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., Benchimol, E.I., Panaccione, R., Ghosh, S., Barkema, H.W., et al. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46-54 e42; quiz e30.
Moon, Y., Glasgow, W.C., and Eling, T.E. (2005). Curcumin suppresses interleukin 1beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmacol Exp Ther 315, 788-795.
Nagase, H., Visse, R., and Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562-573.
Nebbaki, S.S., El Mansouri, F.E., Afif, H., Kapoor, M., Benderdour, M., Duval, N., Pelletier, J.P., Martel-Pelletier, J., and Fahmi, H. (2012). Egr-1 contributes to IL-1-mediated down-regulation of peroxisome proliferator-activated receptor gamma expression in human osteoarthritic chondrocytes. Arthritis Res Ther 14, R69.
Nielsen, O.H., and Munck, L.K. (2007). Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol 4, 160-170.
Okada, Y., Nagase, H., and Harris, E.D., Jr. (1987). Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J Rheumatol 14 Spec No, 41-42.
Ravi, A., Garg, P., and Sitaraman, S.V. (2007). Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis 13, 97-107.
Reynolds, P.R., Cosio, M.G., and Hoidal, J.R. (2006). Cigarette smoke-induced Egr-1 upregulates proinflammatory cytokines in pulmonary epithelial cells. Am J Respir Cell Mol Biol 35, 314-319.
Sartor, R.B. (2006). Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3, 390-407.
Sengupta, N., and MacDonald, T.T. (2007). The role of matrix metalloproteinases in stromal/epithelial interactions in the gut. Physiology (Bethesda) 22, 401-409.
Sipponen, T., and Kolho, K.L. (2013). [Application of TNF-alpha blocker concentration assays in the treatment of inflammatory bowel diseases]. Duodecim 129, 499-505.
Subbaramaiah, K., Yoshimatsu, K., Scherl, E., Das, K.M., Glazier, K.D., Golijanin, D., Soslow, R.A., Tanabe, T., Naraba, H., and Dannenberg, A.J. (2004). Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279, 12647-12658.
Tureyen, K., Brooks, N., Bowen, K., Svaren, J., and Vemuganti, R. (2008). Transcription factor early growth response-1 induction mediates inflammatory gene expression and brain damage following transient focal ischemia. J Neurochem 105, 1313-1324.
von Lampe, B., Barthel, B., Coupland, S.E., Riecken, E.O., and Rosewicz, S. (2000). Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 47, 63-73.
Vu, T.H., and Werb, Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14, 2123-2133.
Wang, Y.D., and Yan, P.Y. (2006). Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in ulcerative colitis. World J Gastroenterol 12, 6050-6053.
Wirtz, S., and Neurath, M.F. (2007). Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 59, 1073-1083.
Xu, X.C., Gao, H., Zhang, W.B., Abuduhadeer, X., and Wang, Y.H. (2013). Clinical significance of immunogenic cell death biomarker rage and early growth response 1 in human primary gastric adenocarcinoma. Int J Immunopathol Pharmacol 26, 485-493.
Yan, S.F., Fujita, T., Lu, J., Okada, K., Shan Zou, Y., Mackman, N., Pinsky, D.J., and Stern, D.M. (2000). Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6, 1355-1361.
Zhang, J., Xie, S., Ma, W., Teng, Y., Tian, Y., Huang, X., and Zhang, Y. (2013). A newly identified microRNA, mmu-miR-7578, functions as a negative regulator on inflammatory cytokines tumor necrosis factor-alpha and interleukin-6 via targeting Egr1 in vivo. J Biol Chem 288, 4310-4320.
校內:2018-08-29公開