簡易檢索 / 詳目顯示

研究生: 張宇晴
Chang, Yu-Ching
論文名稱: 可愛化與表情應用於 AI 聊天機器人形象對持續使用與訂閱意圖的影響
Effect of Cuteness and Facial Expression on AI Chatbot Image on Continuance and Subscription Intention
指導教授: 侯建任
Hou, Jian-Ren
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 53
中文關鍵詞: AI聊天機器人延伸型整合科技接受模型(UTAUT2)擬人化可愛效應臉部表情
外文關鍵詞: AI chatbots, Extended Unified Theory of Acceptance and Use of Technology (UTAUT2), anthropomorphism, cuteness effect, facial expressions
相關次數: 點閱:73下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AI聊天機器人已經普及並融入我們的日常生活,市場規模不斷擴大,也引來許多競爭對手。使用者由於可以選擇不同平台上的AI聊天機器人,往往同時使用多個平台,或者從舊平台轉移到新平台。因此,如何維持使用者的持續使用與訂閱意圖成為重要的議題。而擬人化是一種常見的市場行銷方式,但是仍未有人討論擬人化AI聊天機器人是否可以讓使用者持續使用與訂閱。
    因此,本研究旨在研究可愛化或表情化的AI聊天機器人對使用者的感受影響,並且分析這些感受對AI聊天機器人持續使用和訂閱意圖的影響。同時,本研究利用延伸型整合科技接受模型(UTAUT2)作為衡量感受之基礎架構。本研究使用問卷調查蒐集資料,並利用SPSS Statistic 29.0和SmartPLS4進行MANOVA和結構方程模型分析方法,以檢驗可愛化或表情化是否最終會影響持續使用意圖和持續訂閱意圖。
    本研究MANOVA結果證實,可愛化或表情化的AI聊天機器人可以提升使用者的績效預期與享樂動機,而本研究進行結構方程模型分析,結果顯示績效預期與享樂動機會正向影響進使用者的持續使用與訂閱意圖。因此,服務提供商亦可透過可愛化或表情化AI聊天機器人以提高持續使用與訂閱的行為意圖。

    AI chatbots have become popular and integrated into our daily lives, with the market continually expanding and attracting numerous competitors. Users often engage with multiple platforms simultaneously or migrate from old platforms to new ones, given the variety of AI chatbots available. Therefore, maintaining users' intention to continue using and subscribing has become a crucial issue.
    Anthropomorphism is a common marketing approach, but its impact on user continuance and subscription intention to anthropomorphized AI chatbots remains underexplored. Therefore, this study aims to investigate how cuteness or facial expression on AI chatbots influence user perceptions and analyze the effects of these perceptions on user continuance and subscription intention. The study utilizes the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) as the foundational framework for measuring perceptions. Data is collected through a questionnaire survey, and MANOVA and Structural Equation Modeling (SEM) using SPSS Statistics 29.0 and SmartPLS4 are employed to examine whether cuteness or expressiveness ultimately affects continuance and subscription intention.
    The MANOVA results confirm that cuteness or facial expression on AI chatbots enhances users' performance expectancy and hedonic motivation. The SEM analysis in this study indicates that performance expectancy and hedonic motivation positively influence users’ continuance and subscription intention. Therefore, service providers can enhance behavioral intentions for continuance and subscription with cuteness or facial expression on AI chatbots.

    摘要 i 英文摘要 ii 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 x 第1章緒論 1 第2章文獻探討 5 2.1AI聊天機器人 5 2.2擬人化 6 2.2.1可愛外表 6 2.2.2臉部表情 7 2.3 UTAUT2 9 第3章研究方法 13 3.1研究設計 13 3.2問卷設計 14 3.3資料分析方法 19 第4章資料分析與結果 21 4.1樣本結構 21 4.2研究檢定分析 22 4.2.1操弄檢定 22 4.2.2MANOVA 23 4.2.3收斂效度 26 4.2.4區別效度 27 4.2.5共線性診斷 27 4.2.6結構方程模式 28 第5章結論 30 5.1實務貢獻 31 5.2學術貢獻 32 5.3結論 33 5.4研究限制與未來研究建議 33 參考文獻 35

    Abushanab, E., & Pearson, J. M. (2007). Internet banking in Jordan: the unified theory of acceptance and use of technology (UTAUT) perspective. Journal of Systems and Information Technology, 9(1), 78–97. https://doi.org/10.1108/13287260710817700
    Adapa, A., Nah, F. F.-H., Hall, R. H., Siau, K., & Smith, S. N. (2018). Factors influencing the adoption of smart wearable devices. International Journal of Human–Computer Interaction, 34(5), 399–409. https://doi.org/10.1080/10447318.2017.1357902
    Aggarwal, McGill, A. L. (2007). Is That Car Smiling at Me? Schema Congruity as a Basis for Evaluating Anthropomorphized Products. Journal of Consumer Research, 34(4), 468–479. https://doi.org/10.1086/518544
    Aggarwal, P., & McGill, A. (2012). When brands seem human, do humans act like brands? Automatic behavioral priming effects of brand anthropomorphism. Journal of Consumer Research, 39(2), 307–323. https://doi.org/10.1086/662614
    Ahmed, M. H., Bogale, A. D., Tilahun, B., Kalayou, M. H., Klein, J., Mengiste, S. A., & Endehabtu, B. F. (2020). Intention to use electronic medical record and its predictors among health care providers at referral hospitals, north-West Ethiopia, 2019: Using unified theory of acceptance and use technology 2 (UTAUT2) model. BMC Medical Informatics and Decision Making, 20(1), 1–11. https://doi.org/10.1186/s12911-020-01222-x
    Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
    Al-Azawei, A., & Alowayr, A. (2020). Predicting the intention to use and hedonic motivation for mobile learning: A comparative study in two Middle Eastern countries. Technology in Society, 62, 101325. https://doi.org/10.1016/j.techsoc.2020.101325
    Al-Emran, M., Al-Qudah, A. A., Abbasi, G. A., Al-Sharafi, M. A., & Iranmanesh, M. (2023). Determinants of Using AI-Based Chatbots for Knowledge Sharing: Evidence From PLS-SEM and Fuzzy Sets (fsQCA). IEEE Transactions on Engineering Management, 1–15. https://doi.org/10.1109/TEM.2023.3237789
    Anthony, B., Kamaludin, A., & Romli, A. (2021). Predicting academic staffs behaviour intention and actual use of blended learning in higher education: Model development and validation. Technology, Knowledge and Learning, 1–47. https://doi.org/10.1007/s10758-021-09579-2
    Beverland M B, Farrelly F J. (2010). The quest for authenticity in consumption: Consumers’ purposive choice of authentic cues to shape experienced outcomes. Journal of Consumer Research, 36(5), 838–856. https://doi.org/10.1086/615047
    Bettman, Luce, M. F., and Payne, J. W. (1998). Constructive Consumer Choice Processes, Journal of consumer research, 25(3), 187–217. https://doi.org/10.1086/209535
    Brown, S. A., & Venkatesh, V. (2005). Model of Adoption of Technology in the Household: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29 (4), 399–426. https://doi.org/10.2307/25148690
    Buck, R.W.; Savin, V.J.; Miller, R.E.; Caul, W.F. (1972) Communication of affect through facial expressions in humans. J. Pers. Soc. Psychol, 23(3), 362– 371. https://doi.org/10.1037/h0033171
    Caudwell, C., & Lacey, C. (2020). What do home robots want? The ambivalent power of cuteness in robotic relationships. Convergence, 26(4), 956–968. https://doi.org/10.1177/1354856519837792
    C. Bartneck, T. Suzuki, T. Kanda, and T. Nomura (2006). The Influence of People’s Culture and Prior Experiences with Aibo on Their Attitude towards Robots. AI & Society (21), 217–230. https://doi.org/10.1007/s00146-006-0052-7
    Chakava, M. H., Mberia, H. K., & Gatero, G. (2018). Relationship between performance expectancy and use of new media in scholarly communication by academic staff in public universities in Kenya. IOSR Journal of Humanities and Social Science, 23(6), 49–59. https://doi.org/10.9790/0837-2306044959
    Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443–3463. https://doi.org/10.1007/s10639-020-10159-7
    Childers, T. L., Carr, C. L., Peck, J., and Carson, S. (2001). Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. Journal of Retailing, 77 (4), 511– 535. https://doi.org/10.1016/S0022-4359(01)00056-2
    Christou, P., Simillidou, A., & Stylianou, M. C. (2020). Tourists’ perceptions regarding the use of anthropomorphic robots in tourism and hospitality. International Journal of Contemporary Hospitality Management, 32(11), 3665–3683. https://doi.org/10.1108/IJCHM-05-2020-0423
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
    de Graaf M, Allouch S, Van Dijk JA (2016). Long-term acceptance of social robots in domestic environments: insights from a user’s perspective. In: AAAI Spring Symposia.
    Dietvorst BJ, Simmons JP, Massey C (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Management Science. 64(3), 1155–1170. https://doi.org/10.1287/mnsc.2016.2643
    Eckhardt, A., Laumer, S., & Weitzel, T. (2009). Who influences whom? Analyzing workplace referents’ social influence on its adoption and non-adoption. Journal of Information Technology, 24(1), 11–24. https://doi.org/10.1057/jit.2008.31
    Edlund, J., Beskow, J., (2007). Pushy versus meek – using avatars to influence turn-taking behaviour. In: INTERSPEECH-2007 (pp.682–685). https://doi.org/10.21437/Interspeech.2007-289
    Ekman, P. (1972). Universal and cultural differences in facial expression of emotion. In J. K. Cole (Ed.), Nebraska Symposium on Motivation (pp. 207-286). Lincoln, NE: University of Nebraska Press.
    Elfenbein, H. A., & Ambady, N. (2002a). On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychological Bulletin, 128, 203–235. https://doi.org/10.1037/0033-2909.128.2.203
    Epley, Waytz, A., and Cacioppo, J. T. (2007). On Seeing Human: a Three-factor Theory of Anthropomorphism, Psychological review, 114(4), 864. https://doi.org/10.1037/0033-295X.114.4.864
    Fox, J., Ahn, S. J., Janssen, J. H., Yeykelis, L., Segovia, K. Y., & Bailenson, J. N. (2015). Avatars versus agents: A meta-analysis quantifying the effect of agency on social influence. Human-Computer Interaction, 30(5), 401–432. https://doi.org/10.1080/07370024.2014.921494
    Froehlich A (2018) Pros and cons of chatbots in the IT helpdesk. Informationweek.com. Accessed October 18, 2018, https://www.informationweek.com/strategic-cio/it-strategy/pros-and-cons-of-chatbots-in-the-it-helpdesk/a/d-id/1332942.
    Glocker, M. L., Langleben, D. D., Ruparel, K., Loughead, J. W., Valdez, J. N., Griffin, M. D., et al. (2009). Baby schema modulates the brain reward system in nulliparous women. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 9115–9119. https://doi.org/10.1073/pnas.0811620106
    Golle, J., Lisibach, S., Mast, F. W., & Lobmaier, J. S. (2013). Sweet puppies and cute babies: Perceptual adaptation to babyfacedness transfers across species. PloS one, 8(3), e58248. https://doi.org/10.1371/journal.pone.0058248
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). SEM: an introduction. Multivariate Data Analysis: A Global Perspective (7th ed., pp. 629-686). Upper Saddle River, NJ: Pearson Education.
    Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). Sage.
    Hellén, K., & Sääksjärvi, M. (2013). Development of a scale measuring childlike anthropomorphism in products. Journal of Marketing Management, 29(1-2), 141– 157. https://doi.org/10.1080/0267257X.2012.759989
    Holbrook M B, Woodside A G. (2008). Animal companions, consumption experiences, and the marketing of pets: Transcending boundaries in the animal human distinction. Journal of Business Research, 61(5), 377–381. https://doi.org/10.1016/j.jbusres.2007.06.024
    Huang, D.-H., & Chueh, H.-E. (2022). Behavioral intention to continuously use learning apps: A comparative study from Taiwan universities. Technological Forecasting and Social Change, 177, 121531. https://doi.org/10.1016/j.techfore.2022.121531
    Izard, C. E. (1971). The Face of Emotion. New York: Appleton-Century-Crofts.
    Izard, C. E. (1977). Human Emotions. New York: Plenum Press.
    Izard, C. E. (2007). Basic emotions, natural kinds, emotional schemas, and a new paradigm. Perspectives on Psychological Science, 2, 260-280. https://doi.org/10.1111/j.1745-6916.2007.00044.x
    Keating, C. F., Randall, D. W., Kendrick, T., & Gutshall, K. A. (2003). Do babyfaced adults receive more help? The (cross-cultural) case of the lost resume. Journal of Nonverbal Behavior, 27(2), 89–109. https://doi.org/10.1023/A:1023962425692
    Kirmani, A. R. (2022). Artificial intelligence-enabled science poetry. ACS Energy Letters, 8, 574–576. https://doi.org/10.1021/acsenergylett.2c02758
    Klecková J. (2009) Important nonverbal attributes for spontaneous speech recognition. In: ICONS ’09: proceedings of the 2009 fourth international conference on systems. IEEE Computer Society, Washington, DC, USA, 13–16. https://doi.org/10.1109/ICONS.2009.41
    Lee, H. C., Chang, C. T., Chen, Y. H., & Huang, Y. S. (2018). The spell of cuteness in food consumption? It depends on food type and consumption motivation. Food Quality and Preference, 65, 110–117. https://doi.org/10.1016/j.foodqual.2017.11.002
    Lefkoff-Hagius, Mason, C. H. (1993). Characteristic, Beneficial, and Image Attributes in Consumer Judgments of Similarity and Preference. Journal of Consumer Research, 20(1), 100-110. https://doi.org/10.1086/209336
    Lin, Y. T., Doong, H. S., & Eisingerich, A. B. (2021). Avatar design of virtual salespeople: Mitigation of recommendation conflicts. Journal of Service Research, 24(1), 141–159. https://doi.org/10.1177/1094670520964872
    Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., & Tang, J. (2023). GPT understands, too. arXiv. https://doi.org/10.48550/arXiv.2103.10385
    Lorenz, K. (1943). Die angeborenen formen möglicher erfahrung. Zeitschrift für Tierpsychologie, 5(2), 235–409. https://doi.org/10.1111/j.1439-0310.1943.tb00655.x
    Lucas, G. M., Gratch, J., King, A., & Morency, L. P. (2014). It’s only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94–100. https://doi.org/10.1016/j.chb.2014.04.043
    Lu, J., Yao, J. E., & Yu, C.-S. (2005). Personal innovativeness, social influences and adoption of wireless internet services via mobile technology. Journal of Strategic Information Systems, 14, 245–268. https://doi.org/10.1016/j.jsis.2005.07.003
    Lv, X. Y., Liu, Y., Luo, J. J., Liu, Y. Q., & Li, C. X. (2021). Does a cute artificial intelligence assistant soften the blow? The impact of cuteness on customer tolerance of assistant service failure. Annals of Tourism Research, 87. https://doi.org/10.1016/j.annals.2020.103114
    Madhavan, P., Wiegmann, D. A., & Lacson, F. C. (2006). Automation failures on tasks easily performed by operators undermine trust in automated aids. Human Factors, 48(2), 241–256. https://doi.org/10.1518/001872006777724408
    Mandler, G. (1984). Mind and body: Psychology of Emotion and Stress. New York: Norton.
    Mehrabian A. (1968) Communication without words. Psychol Today 2 (4), 53–56. https://doi.org/10.4324/9781315080918-15
    Morreall J. (1991) Cuteness. British Journal of Aesthetics, 31(1), 39–47. https://doi.org/10.1093/bjaesthetics/32.2.162
    Nenkov, G. Y., & Scott, M. L. (2014). So cute I could eat it up: Priming effects of cute products on indulgent consumption. Journal of Consumer Research, 41(2), 326–341. https://doi.org/10.1086/676581
    Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2021). Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet. Computers and Education Open, 2, 100041. https://doi.org/10.1016/j.caeo.2021.100041
    Nittono, H., Fukushima, M., Yano, A., & Moriya, H. (2012). The power of kawaii: Viewing cute images promotes a careful behavior and narrows attentional focus. PLoS One, 7(9), Article e46362. https://doi.org/10.1371/journal.pone.0046362
    Rafaeli, S., & Noy, A. (2005). Social presence: Influence on bidders in internet auctions. Electronic Markets, 15(2), 158–175. https://doi.org/10.1080/10196780500083886
    Sanders J. T. (1992) On ‘‘cuteness’’. British Journal of Aesthetics, 32(2), 162–165. https://doi.org/10.1093/bjaesthetics/32.2.162
    Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial least squares structural equation modeling. In Handbook of market research, 587–632. https://doi.org/10.1007/978-3-319-05542-8_15-2
    Sherman, G. D., Haidt, J., & Coan, J. A. (2009). Viewing cute images increases behavioral carefulness. Emotion, 9(2), 282–286. https://doi.org/10.1037/a0014904
    Sing, C. C., Teo, T., Huang, F., Chiu, T. K. F., & Xing Wei, W. (2022). Secondary school students’ intentions to learn AI: Testing moderation effects of readiness, social good and optimism. Educational Technology Research and Development, 70(4). https://doi.org/765–782. 10.1007/s11423-022-10111-1
    Sprengelmeyer, R., Perrett, D. I., Fagan, E. C., Cornwell, R. E., Lobmaier, J. S., Sprengelmeyer, A., et al. (2009). The cutest little baby face: A hormonal link to sensitivity to cuteness in infant faces. Psychological Science, 20(2), 149–154. https://doi.org/10.1111/j.1467-9280.2009.02272.x
    Sun, J., Nazlan, N. H., Leung, X. Y., & Bai, B. (2020). A cute surprise: Examining the influence of meeting giveaways on word-of-mouth intention. Journal of Hospitality and Tourism Management, 45, 456–463. https://doi.org/10.1016/j.jhtm.2020.10.003
    Terblanche, N., & Kidd, M. (2022). Adoption factors and moderating effects of age and gender that influence the intention to use a nondirective reflective coaching chatbot. SAGE Open, 12(2), 215824402210961. https://doi.org/10.1177/21582440221096136
    T. Nomura, T. Kanda, T. Suzuki, & K. Kato (2008). Prediction of Human Behavior in Human-Robot Interaction Using Psychological Scales for Anxiety and Negative Attitudes Toward Robots. IEEE Transactions on Robotics, (24), 442– 451. https://doi.org/10.1109/TRO.2007.914004
    Van Raaij, E. M., & Schepers, J. J. L. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838–852. https://doi.org/10.1016/j.compedu.2006.09.001
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance information technology: toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
    Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
    Wang, Y.-S., Wu, M.-C., & Wang, H.-Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology, 40(1), 92–118. https://doi.org/10.1111/j.1467-8535.2007.00809.x
    Wen Wan, Peng Chen, R., and Jin, L. (2017). Judging a Book by Its Cover? The Effect
    of Anthropomorphism on Product Attribute Processing and Consumer Preference.
    Journal Of Consumer Research, 43(6), 1008-1030. https://doi.org/10.1093/jcr/ucw074
    Wilson HJ, Daugherty PR, Morini-Bianzino N (2017) The jobs that artificial intelligence will create. MIT Sloan Management Rev. 58(4). https://doi.org/10.7551/mitpress/11645.003.0020
    Zhang, H., Lu, Y., Shi, X., Tang, Z., & Zhao, Z. (2012). Mood and social presence on consumer purchase behaviour in C2C E-commerce in Chinese culture. Electronic Markets, 22(3), 143–154. https://doi.org/10.1007/s12525-012-0097-z
    Zhou, L. L., Owusu-Marfo, J., Asante Antwi, H., Antwi, M. O., Kachie, A. D. T., & Ampon-Wireko, S. (2019). Assessment of the social influence and facilitating conditions that support nurses’ adoption of hospital electronic information management systems (HEIMS) in Ghana using the unified theory of acceptance and use of technology (UTAUT) model. BMC Medical Informatics and Decision Making, 19(1), 1–9. https://doi.org/10.1186/s12911-019-0956-z

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE