| 研究生: |
利宗倫 Li, Tzung-Luen |
|---|---|
| 論文名稱: |
以溶熱法合成 Ⅰ-Ⅲ-Ⅵ 族 CuInS2 奈米粒子及其特性探討 Solvothermal Synthesis of CuInS2 (Ⅰ-Ⅲ-Ⅵ) Nanoparticles and Study of Their Specific Features |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 黃銅礦 、溶熱法 、奈米粒子 |
| 外文關鍵詞: | CuInS2, Ostwald Ripening |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用氯化亞銅、氯化銦和過量的硫為反應物、十八油胺為界面活性劑、己烷為溶劑,藉由簡易且安全性高之溶熱法成功製備出粒徑在 4.9 奈米 ~ 5.8 奈米之間,而且粒徑均勻度高的三成份 CuInS2 奈米粒子。藉由 X 光繞射分析和選區電子繞射,確定合成所得的奈米粒子結晶結構為黃銅礦結晶結構; 使用穿透式電子顯微鏡觀,可以觀察到奈米粒子的形狀和粒徑均勻度; 而藉紫外光/可見光吸收光譜和螢光光譜,也可以觀察到奈米粒子由於粒徑小於其本身之激子波爾尺寸時,在光學上發生的量子侷限效應。在實驗中,我們也探討金屬離子濃度和反應時間對奈米粒子形態的影響,發現當金屬離子濃度太低或反應時間太久,都會發生使奈米粒子不均勻化的 Ostwald Ripening 現象。
Narrow size-distribution ternary CuInS2 nanoparticles with size from 4.9 nm to 5.8 nm synthesized from copper chlorides, indium chlorides, excess sulfur, oleylamine as surfactants and hexane as solvent were successfully prepared through simple and safe solvothermal route. The CuInS2 nanoparticles were chalcopyrite structure characterized by XRD pattern and SAED, the morphology and the size of nanoparticles were characterized by TEM. Because the size of the nanoparticles was smaller than its excitonic Bohr size, quantum confinement effect of nanoparticles on optical properties happened and was observed by UV/vis absorption and photoluminescence. In this experiment, we also discussed the effects of cationic concentration and reaction time on the morphology of nanoparticles. Ostwald Ripening which led nanoparicles defocused was occurred as cationic concentration was lower or reaction time was longer.
[1] Tito, T.; Paul, O.; Nigel, L. P. Chem. Mater. 2001, 13, 3843
[2] Vossmeyer T.; Katsikas L.; Giersig M.; Popovic I. G.; Diesner K.; Chemseddine A.; Eychmueller A.; H. W. J. Phys. Chem. 1994, 98, 7665
[3] (a)M. L. Cohen; M. Y. Chou; W. D. Knight; Walt A. De H. J. Phys. Chem. 1987, 91, 3141 ; (b)C. R. Chris Wang; Stuart Pollack; Tina A. Dahlseid; Geoffrey M. Koretsky and Manfred M. K. J. Chem. Phys. 1992, 96, 7931
[4] Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183
[5] Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. J. Am. Chem. Soc. 2006, 128, 3241
[6] Chen, Y.; Johnson, E.; Peng, X. J. Am. Chem. Soc. 2007, 129, 10937
[7] Jun, Y.-W.; Lee, J.-H.; Choi, J.-S.; Cheon, J. J. Phys. Chem. B. 2005, 109, 14795
[8] Murray C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater.Sci. 2000, 30, 545.
[9] Pamplin, B. R. Crystal Growth; Pergamon Press: New York,1975.
[10] Jiang, Y. Forced Hydrolysis and Chemical Co-Precipitation. In Handbook of Nanophase and Nanostructured Materials; Wang,Z. L., Liu, Y., Zhang, Z., Eds.; Kluwer Academic: New York, 2003; p59.
[11] Jongnam P.; Jin J.; Soon Gu K.; Youngjin J.; Taeghwan H. Angew. Chem. Int. Ed. 2007, 46, 4630
[12] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
[13] Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. Nano Lett. 2004, 4, 2261
[14] Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333.
[15] Qu, L.; Yu, W. W.; Peng, X. Nano Lett. 2004, 4, 465.
[16] Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Nano Lett. 2003, 3, 1103.
[17] Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 5632
[18] Chen, X.; Nazzal, A. Y.; Xiao, M.; Peng, Z. A.; Peng, X. J. Lumin. 2002, 97, 205.
[19] Peng, X.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem., Int. Ed. 1997, 36, 145.
[20] Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343.
[21] Yen, B. K. H.; Stott, N. E.; Jensen, K. F.; Bawendi, M. G. Adv. Mater. 2003, 15, 1858.
[22] Liberato, M.; Erik, C. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.
[23] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
[24] Yu, W. W.; Peng, X. Angew. Chem., Int. Ed. 2002, 41, 2368
[25] Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Colloids Surf., A 2002, 202, 145.
[26] Yu, W. W.; Wang, Y. A.; Peng, X. Chem. Mater. 2003, 15, 4300.
[27] Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase,M.; Weller, H. J. Phys. Chem. B 2001, 105, 2260.
[28] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmueller, A.; Weller, H. J. Phys.Chem. B 2002, 106, 7177.
[29] Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655.
[30] Shim, M.; Guyot-Sionnest, P. J. Am. Chem. Soc. 2001, 123, 11651.
[31] Battaglia, D.; Peng, X. Nano Lett. 2002, 2, 1027
[32] Tanori, J.; Pileni, M. P. Langmuir 1997, 13, 639
[33] Legrand, J.; Petit, C.; Pileni, M. P. J. Phys. Chem. B 2001, 105, 5643
[34] Kawai, T.; Fujino, A.; Kon-No, K. Colloids Surf. A 1996, 100, 245
[35] Chang, S. Y.; Liu, L.; Asher, S. A. J. Am. Chem. Soc. 1994, 116, 6739
[36] Joselevich, E.; Willner, I. J. Phys. Chem. 1994, 98, 7628
[37] Chhabra, V.; Pillai, V.; Mishra, B. K.; Morrone, A.; Shah, D. O.Langmuir 1995, 11, 3307
[38] Gan, L. M.; Zhang, K.; Chew, C. H. Colloids Surf. A 1996, 110, 199
[39] Chang, C. L.; Fogler, H. S. Langmuir 1997, 13, 3295
[40] Esquena, J.; Tadros, T. F.; Kostarelos, K.; Solans, C. Langmuir 1997, 13, 6400
[41] Lopez-Perez J. A.; Lopez-Quintela, M. A.; Mira, J.; Rivas, J.; Charles, S. W. J. Phys. Chem. B 1997, 101, 8045
[42] Li, Y.; White, T.; Lim, S. H. Rev. Adv. Mater. Sci. 2003, 5, 211
[43] Coln, G.; Hidalgo, M. C.; Navo, J. A. Catal. Today 2002, 76, 91
[44] Uekawa, N.; Kajiwara, J.; Kakegawa, K.; Sasaki, Y. J. Colloid Interface Sci. 2002, 250, 285
[45] Lackey, W. J. Nucl. Technol. 1980, 49, 321
[46] Woodhead, J. L. Sci. Ceram. 1983, 12, 179
[47] Chatterjee, A.; Chakravorty, D. J. Mater. Sci. 1992, 27, 4115
[48] Gao, J.; Qi, Y.; Yang, W.; Guo, X.; Li, S.; Li, X. Mater. Chem.Phys. 2003, 82, 602
[49] Kiss, K.; Magder, J.; Vukasovich, M. S.; Lockhart, R. J. J. Am. Ceram. Soc. 1966, 49, 291
[50] Shen, J.; Zhang, Z.; Wu, G. J. Chem. Eng. Jpn. 2003, 36, 1270
[51] Viano, A.; Mishra, S. R.; Lloyd, R.; Losby, J.; Gheyi, T. J. Non-Cryst. Solids 2003, 325, 16
[52] Mondelaers, D.; Vanhoyland, G.; Van den Rul, H.; D’Haen, J.;Van Bael, M. K.; Mullens, J.; Van Poucke, L. C. Mater. Res. Bull.2002, 37, 901
[53] Zeng, W. M.; Gao, L.; Guo, J. K. Nanostruct. Mater. 1998, 10, 543
[54] Pathak, L. C.; Singh, T. B.; Verma, A. K.; Ramachandrarao, P.J. Metall. Mater. Sci. 2000, 42, 93
[55] Grosso, D.; Sermon, P. A. J. Mater. Chem. 2000, 10, 359
[56] Chang, Y.-S.; Chang, Y.-H.; Chen, I.-G.; Chen, G.-J.; Chai, Y.-L. J. Cryst. Growth 2002, 243, 319.
[57] Wang, X.; Zhang, Z.; Zhou, S. Mater. Sci. Eng. B 2001, 86, 29
[58] Veith, M.; Mathur, S.; Lecerf, N.; Huch, V.; Decker, T.; Beck, H.P.; Eiser, W.; Haberkorn, R. J. Sol-Gel Sci. Technol. 2000, 17, 145
[59] Sharma, N.; Shaju, K. M.; Rao, G. V. S.;Chowdari, B. V. R. Electrochem. Commun. 2002, 4, 947
[60] Burukhin, A. A.; Churagulov, B. R.; Oleynikov, N. N. High Press. Res. 2001, 20, 255.
[61] Lu, S. W.; Lee, B. I.; Wang, Z. L.; Guo, J. K. J. Cryst. Growth 2000, 219, 269.
[62] Chen, C. C.; Jiao, X.; Chen, D.; Zhao, Y. Mater. Res. Bull. 2001, 36, 2119.
[63] Maclaren, I.; P. A. Trusty, C. B. Ponton Acta Mater. 1999, 47, 779.
[64] Yu, S.-H.; Shu, L.; Wu, Y.-S.; Qian, Y.-T.; Xie, Y.; Yang, L. Mater. Res. Bull. 1998, 33, 1207.
[65] Qian, X. F.; Zhang, X. M.; Wang, C.; Tang, K. B.; Xie, Y.; Qian,Y. T. Mater. Res. Bull. 1999, 34, 433.
[66] Wang, C.; Zhang, W. X.; Qian, X. F.; Zhang, X. M.; Xie, Y.; Qian,Y. T. Mater. Lett. 1999, 40, 255.
[67] Qian, X. F.; Zhang, X. M.; Wang, C.; Wang, W. Z.; Qian, Y. T. Mater. Res. Bull. 1998, 33, 669.
[68] Yang, J.; Mei, S.; Ferreira, J. M. F. Mater. Sci. Eng. C 2001, 15, 183
[69] Yoshimura, M.; Somiya, S. Am. Ceram. Soc. Bull. 1980, 59, 246
[70] Chen, D.; Shen, G. Z.; Tang, K. B.; Liu, Y. K.; Qian, Y. T. Appl. Phys. A 2003, 77, 747
[71] Shao, M. W.; Mo, M. S.; Cui, Y.; Chen, G.; Qian Y. T. J. Cryst. Growth 2001, 233, 799
[72] Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Deng, B.; Jiang, R. R.; Qian,Y. T.; Yu, W. C.; Zhou, G. E.; Liu, X. M.; Wu, J. X. J. Phys. Chem. B 2000, 104, 5251
[73] Cai, W.; Zhang, L. J. Phys. Condensed Matter 1997, 9, 7257
[74] Maya, L.; Paranthaman, M.; Thundat, T.; Bauer, M. L. J. Vac.Sci. Technol. B 1996, 14, 15
[75] Li, W.; Gao, L.; Guo, J. K. Nanostruct. Mater. 1998, 10, 1043
[76] Indackers, D.; Janzen, C.; Rellinghaus, B. Nanostruct. Mater.1998, 10, 247
[77] Depero, L. E.; Bonzi, P.; Musci, M.; Casale, C. J. Solid State Chem. 1994, 111, 247
[78] Yang, Y.; Leppert, V. J.; Risbud, S. H.; Twamley, B.; Power, P. P.; Lee, H. W. H. Appl. Phys. Lett. 1999, 74, 2262
[79] Okuyama, K.; Lenggoro, I. W.; Tagami, N. J. Mater. Sci. 1997, 32, 1229
[80] Binder, J. R.; Wedemeyer, H. Adv. Mater. 1997, 9, 1049
[81] Valentini, A.; Carreno, N. L. V.; Probst, L. F. D.; Leite, E. R.;Longo, E. Microporous Mesoporous Mater. 2004, 68, 151
[82] Jou, S.; Hsu, C. K. Mater. Science Eng. B 2004, 106, 275
[83] Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Morjan, R. E.;Voicu, I.; Sandu, I.; Soare, I.; Ploscaru, M.; Fleaca, C.; Ciupina,V.; Prodan, G.; Rand, B.; Brydson, R.; Woodword, A. DiamondRelat. Mater. 2004, 13, 362
[84] Sen, R.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 1997, 267, 276
[85] Sen, R.; Govindaraj, A.; Rao, C. N. R. Chem. Mater. 1997, 9, 2078
[86] Rao, C. N. R.; Govindaraj, A.; Sen, R.; Satishkumar, B. C. Mater. Res. Innovations 1998, 2, 128
[87] Rao, C. N. R.; Sen, R.; Satishkumar, B. C.; Govindaraj, A. Chem. Commun. 1998, 1525
[88] Rao, C. N. R.; Govindaraj, A. Acc. Chem. Res. 2002, 35, 998
[89] Gundiah, G.; Madhav, G. V.; Govindaraj, A.; Rao, C. N. R. J. Mater. Chem. 2002, 12, 1606
[90] Deepak, F. L.; Vinod, C. P.; Mukhopadhyay, K.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2002, 353, 345
[91] J. E. Jaffe and A. Zunger, Phys. Rev. B 1983, 28, 5822
[92] J. E. Jaffe and A. Zunger, Phys. Rev. B 1983, 27, 5176
[93] S. Kono and M. Okusawa, J. Phys. Soc. Jpn. 1974, 37, 1301
[94] W. Braun, A. Goldmann, and M. Cardona, Phys. Rev. B 1974, 10, 5069
[95] L. L. Kazmerski and C. C. Shieh, Thin Solid Films 1977, 41, 35
[96] D. C. Look and J. C. Manthuruthil, J. Phys. Chem. Solids 1976, 37, 173
[97] B. Tell, J. L. Shay, and H. M. Kasper, J. Appl. Phys. 1972, 43, 2469
[98] L. L. Kazmerski, M. S. Ayyagari, and G. A. Sanborn, J. Appl. Phys. 1975, 46, 4865
[99] S. P. Grindle, C. W. Smith, and S. D. Mittleman, Appl. Phys. Lett. 1979, 35, 24
[100] H. L. Hwang, C. C. Tu, J. S. Maa, and C. Y. Sun, Solar Energy Mater. 1980, 2, 433
[101] Banger, K. K.; Jin, M. H.-C.;Harris, J. D.; Fanwick, P. E.; Hepp, A. F. Inorg. Chem. 2003, 42, 7713
[102] Banger, K. K.; Cowen, J.; Hepp, A. F. Chem. Mater. 2001, 13, 3827
[103] Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J. Phys. Chem. B. 2004, 108, 12429
[104] Choi, S.-H.; Kim, E.-G.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 2520
[105] Lu, Q.; Hu, J.; Tang, K.; Qian, Y.; Zhou, G.; Liu, X. Inorg. Chem. 2000, 39, 1606
[106] Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y. Inorg. Chem. 2000, 39, 2964
[107] B. Li, Y. Xie, J. Huang, Y. Q. Adv. Mater. 1999, 11, 1456
[108] Jianping Xiao, Yi Xie, Yujie Xiong, Rui Tang and Yitai Q. J. Mater. Chem. 2001, 11, 1417
[109] Xiao, Jianping; Xie, Yi; Tang, Rui; Qian, Y. J. Solid State Chem. 2001, 161, 179
[110] S. A. Lopez-Rivera, B. Fontal, J. A. Henao, E. Mora, W. Giriatand R. Vargas, Ternary Multinary Compd. 1998, 152, 175
[111] Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226
[112] L. E. Brus, J. Chem. Phys. 1983, 79, 5566
[113] L. E. Brus, J. Chem. Phys. 1984, 80, 4403
[114] Y. Kayanuma, Solid State Commun. 1986, 59, 405
[115] S. V. Nair, S. Sinha, and K.C. R. Phys. Rev. B 1987, 35, 4098
[116] Knox, R. S. Theory of Excirom; Solid State Physics Supplement 5; Academic Press: New York, 1963
[117] Wang Y.; Herron N. Phys. Rev. B 1990, 42, 7253
[118] Brus, L. J. Phys. Chem. 1986, 90, 2555
[119] Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Otsuka-Yao-Matsuo, S.; Miyazaki, M.; Maeda, H. Chem. Mater. 2006, 18, 3330
[120] Constantin C., Michael H., Lubomir S., Idriss B., Martin L., Gerd M., Ulrike B., Dang-Sheng S., Michael G. 1999, 11, 643
[121] Wang Y. and Herron N. J. Phys. Chem. 1991, 95, 525