簡易檢索 / 詳目顯示

研究生: 奧古斯丹
Augustin, Frantz
論文名稱: 炭素觸媒添加劑對柴油及重油燃燒的影響
Effects of Carbon Catalyzed Additives on Burning of Diesel and Heavy Fuel Oil
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 67
外文關鍵詞: Diesel fuel, Heavy fuel oil, BMES-H2 fuel additive, suspended droplet, Droplet expansion, Microexplosion.
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Performance problems caused by contaminants in fuels can be avoided by treating the fuels with combustion performance additives such as BMES-H2 Carbon Catalyzed Liquid. Various concentrations of fuel blends are prepared based on the suggestion of Rida Electric Company Ltd. An investigation is performed into the combustion properties of diesel and heavy fuel oil by means of suspended droplet vaporization, free falling droplet and spray combustion tests.
    In general, the suspended droplet results show that the droplets with fuel additive evaporate more rapidly than pure diesel droplets. The results show that there is no expansion of the drops at T=300°C. It is also found that under T=400°C, expansion of the drops only occurs for diesel mixing with an additive concentration of 0.5 vol. %, 1.25 vol. % respectively. In addition, it is also shown at T=500°C that for the fuel droplets with an additive concentration of more than 0.5 vol. %, the droplet undergoes an initial expansion before evaporation. The results show that the droplets with fuel additive evaporate more rapidly than the pure heavy oil droplet. The heavy fuel oil vaporization is affected by the addition of BMES-H2 fuel additive. Results show that for 0.3 ~ 0.5 vol.% of fuel additive into heavy fuel oil, the drop slop is non-linear and changed to two different slopes. By adding concentration over 0.5 vol. %, we found that the drop slope is similar to the heavy oil one.
    In the free-falling droplet test, the results show that there was some microexplosion and flame shrinkage for di≈300μm. The ignition point of the droplets with an initial diameter of di≈300μm was better than di≈500μm and di≈700μm, respectively. Overall, the results presented in this study suggest that an expansion of the drop size occurs prior to complete evaporation. However the vaporization rate was not linear due to the effect of the expansion of the droplets.
    The spray combustion experiments are performed using heavy fuel oil without and with fuel additives of concentration 0.5 vol. %. Results show that the presence of the additive contributes to the acceleration of pre-dissociation activity and also reduced the auto-ignition temperature of the fuel and improved the combustion stability.

    Contents Contents...................................................I List of Tables...........................................III List of Figures...........................................IV 1. Introduction............................................1 1.1 Background and Motivation of the Study................1 1.2 Objective of the Study................................3 2. Literature Review.......................................4 2.1 Droplet Vaporization..................................4 2.2 Multicomponent Droplet Combustion.....................8 2.3 BMES-H2 Carbon Catalyzed Liquid......................12 3. Experimental Setup and Methodology.....................14 3.1. Fuel Properties.....................................14 3.2. Suspended Droplet Experiments.......................14 3.3 Free falling droplet experiments.....................16 3.4 Spray Combustion experiments.........................18 4. Results and Discussion.................................21 4.1. Single droplet evaporation..........................21 4.1.1 Burning of diesel oil mixed with BMES-H2.........21 4.1.2 Burning of heavy fuel oil mixed with BMES-H2.....23 4.2. Free falling droplet................................24 4.2.1. Flame streak....................................24 4.2.2. Vaporization rate...............................26 4.3. Spray combustion experiment.........................27 5. Conclusion.............................................29 6. References.............................................31 Tables and Figures........................................35 Appendix..................................................57 List of publications......................................67

    1. Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., Mekhilef, S., “A Review on Biomass as a Fuel for Boilers”, Renew. Sust. Energ. Rev., Vol. 15, p. 2262 - 2289, 2011.
    2. Arent, D. J., Wise A., Gelman R., “The Status and Prospects of Renewable Energy for Combating Global Warming”, Energ. Econ., Vol. 33, p. 584 - 593, 2011.
    3. Hoel, M., Kverndokk S., “Depletion of Fossil Fuels and the Impacts of Global Warming”, Resour. Energy Econ., Vol. 18, p. 115 - 136, 1996.
    4. Ramanathan, V., Feng Y., “Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives”, Atmos. Environ., Vol. 43, p. 37 - 50, 2009.
    5. Zevenhoven, R., Beyene A., “The Relative Contribution of Waste Heat from Power Plants to Global Warming”, Energy, Vol. 36, p. 3754 - 3762, 2011.
    6. Ragland, K. W., Bryden, K. M., “Combustion Engineering”, CRC Press, New York, 2011.
    7. Erbil, H. Y., “Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: a Review”, Adv. Colloid. Interfac., Vol. 170, p. 67 - 86, 2012.
    8. Law, C. K., “Combustion Physics”, Cambridge University Press, New York, 2006.
    9. Law, C. K., Chung, S. H., Srinivasan, N., “Gas-phase Quasi-steadiness and Fuel Vapor Accumulation Effects in Droplet Burning”, Combust. Flame, Vol. 38, p. 173 - 198, 1980.
    10. Calabria, R., Chiariello, F., Massoli, P., “Combustion Fundamentals of Pyrolysis Oil Based Fuels”, Exp. Therm. Fluid. S.C.I., Vol. 31, p. 413 - 420, 2007.
    11. Pan, K. L., Li, J. W., Chen, C. P., Wang, C. H., “On Droplet Combustion of Biodiesel Fuel Mixed with Diesel/alkanes in Microgravity Condition”, Combust. Flame, Vol. 156, p. 1926 - 1936, 2009.
    12. Stanley, C., “Physical Test and Microexplosion Analysis for Water-Oil Emulsions Prepared by Ultrasonic Method”, Master thesis, Kun Shan University, Taiwan, 2010.
    13. Chen, C. K., Lin T. H., “Streamwise Interaction of Burning Drops”, Combust. Flame, Vol. 159, p. 1971, 2012.
    14. Law, C. K., “Mechanism of Droplet Combustion”, J.P.L. Publication, Vol. 7, p. 39 - 53, 1983.
    15. Law, C. K., “Recent Advances in Droplet Vaporization and Combustion”, Prog. Energ. Combust., Vol. 8, p. 171 - 201, 1982.
    16. Faeth, G. M., “Combustion Characteristics of Blended Monopropellant Droplets“, A.I.A.A. J., Vol. 7, No. 70, 1970.
    17. Law, C. K., “Multicomponent Droplet Combustion with Rapid Internal Mixing”, Combust. Flame, Vol. 26, p. 219 - 233, 1976.
    18. Law, C. K., “Internal Boiling and Superheating in Vaporizing Multicomponent Droplets”, A.I.Ch.E. J., Vol. 24, p. 626 - 632, 1978.
    19. Law, C. K., Law, H. K., “A d2-Law for Multicomponent Droplet Vaporization and Combustion”, A.I.A.A. J., Vol. 20, p. 522 - 527, 1982.
    20. Lara-Urbanejo, P., Sirignano, W. A., “Theory of Transient Multicomponent Droplet Vaporization in a Convective Field”, Eighteenth Symposium on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 1365 - 1374, 1981.
    21. Lerner, S. L., Homan, H. S., Sirignano, W. A., “Multicomponent Droplet Vaporization at High Reynolds Number-size”, Composition and Trajectory histories, 73rd A.I.Ch.E. Annual Meeting, Chicago, 1980.
    22. Hanson, S. P., Beér, J. M., and Sarofim, A. F., “Non-Equilibrium Effects in the Vaporization of Multicomponent Fuel Droplets”, Nineteenth Symposium on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 1029 - 1036, 1982.
    23. Wang, C. H., Liu, X. Q., Law, C. K., “Combustion and Micro-explosion of Freely Falling Multicomponent Droplets”, Combust. Flame, Vol. 56, p. 175 - 197, 1984.
    24. Law, C. K, “Recent Advances in Droplet Vaporization and Combustion”, Prog. Energ. Combust., Vol. 8, p. 171, 1982.
    25. Randolph, A. L., Makino, A., Law, C. K., “Liquid-phase Diffusional Resistance in Multicomponent Droplet Gasification”, P. Combust. Inst., Vol. 21, p. 601, 1988.
    26. Castanet, G., Lebouché, M., Lemoine, F., “Heat and Mass Transfer of Combusting Monodisperse Droplets in a Linear Stream”, Int. J. Heat Mass Tran., Vol. 48, p. 3261 - 3275, July, 2005.
    27. Shaw, B. D., Dwyer, H. A., Wei, J. B., “Studies on Combustion of Single and Double Streams of Methanol and Methanol/Dodecanol Droplets”, Combust. Sci. Tech., Vol. 174, p. 29 - 50, 2002.
    28. Sazhin, S. S., “Advanced Models of Fuel Droplet Heating and Evaporation”, Prog. Energ. Combust., Vol. 32, p. 162 - 214, 2006.
    29. Abu-Zaid, M., “An Experimental Study of the Evaporation of Gasoline and Diesel Droplets on Hot Surfaces”, Int. Commun. Heat Mass, Vol. 21, pp. 315 - 322, 1994.
    30. Williams, F. A., “Ignition and Burning of Single Liquid Droplets”, Acta Astronaut., Vol. 12, p. 547 - 553, 1985.
    31. Spalding, D. B., “The Combustion of Liquid Fuels, Fourth Symposium on Combustion”, P. Combust. Inst., p. 847 - 864, 1953.
    32. Jackson, G. S., Avedisian, C. T., Yang, J. C., “Observations of Soot During Droplet Combustion at Low Gravity - Heptane and Heptane/Monochloroalkane Mixtures”, Int. J. Heat Mass Tran., Vol. 35, p. 2017 - 2033, 1992.
    33. Haynes, B. S., Wagner, H. G., “Soot Formation”, Prog. Energ. Combust., Vol. 7, p. 229 - 273, 1981.
    34. Sangiovanni, J. J., Liscinsky, D. S., “Soot Formation Characteristics of Well-defined Spray Flames”, P. Combust. Inst., Vol. 20, p. 1063 - 1073, 1984.

    無法下載圖示 校內:2019-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE