簡易檢索 / 詳目顯示

研究生: 李柏緯
Li, Po-Wei
論文名稱: 以滴定塗裝法製備膠體晶體及其性質之探討
Fabrication and characterization of colloidal crystal by drop-coating method
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 光子晶體滴定塗裝法表面電位布朗運動蒸發速率
外文關鍵詞: Photonic crystal, drop-coating method, zeta potential, Brownian motion, evaporation rate
相關次數: 點閱:120下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗先以Stöber Process製備均一粒徑的球形二氧化矽粉體,並以滴定塗裝法(drop-coating)來製備蛋白石結構之膠體晶體。
    由於膠體粒子在懸浮液中的分散狀態與其表面電位有關,而粒子表面之電位會因懸浮液不同的pH值而改變,實驗結果顯示加入少量NaCl或HCl來增加或降低粒子的表面電位,對於晶體的自組裝並無太大影響,但如添加過量的酸會因使得粒子表面電位過低,導致膠體粒子易產生凝聚現象而影響自組裝進行。另外自組裝進行過程中的溫度與相對濕度也會影響最後得到晶體的品質。由於懸浮液中的粒子因為布朗運動(擴散)的作用而無時無刻相互產生碰撞,溫度的升高會提高碰撞頻率,使最後無法得到有序的膠體晶體,然而過低的溫度會因粒子的自組裝動能不足也無法得有整齊排列的晶體,故溫度為影響滴定塗裝法自組裝的關鍵因素,且隨著膠體球粒徑的下降,最適合自組裝的溫度點亦隨之下降。此外,相對濕度對於自組裝膠體晶體結構亦有所影響,主要是因為它決定了蒸發速率的快慢。較高的相對濕度會因蒸發速率較慢,使液滴中間部分的粒子無法靠著蒸發作用所造成補償流被帶到液滴四周進行自組裝,隨著中間部分粒子濃度越來越高而導致粒子間的凡德瓦爾吸引力越大,產生凝聚現象,最後只能得到四周有序但中間混亂的晶體,此現象可藉由降低溼度、也就是提高蒸發速率來加以改善。且由實驗的結果顯示當在低相對濕度下,反應而得的膠體晶體有較均一的厚度,對於後續的分析與利用會較為有利。
    本研究的第二部份則是探討以上由滴定塗裝法所製備的膠體晶體之光學性質。從光學性質的分析結果發現,本研究所製成之膠體晶體確實具有光子晶體特有的光子能隙現象,此能隙的波段與膠體粒子的大小及入射光的角度有關。當膠體粒子的粒徑由小變大時,能隙的波段會逐漸朝向高波長的方向移動;此外,能隙位置也會隨著入射光的角度變大,能隙位置向低波長方向移動。最後為了探討膠體晶體中膠體粒子與間隙之折射率比值的影響,將高折射率的二氧化鈦膠體溶液填入晶體之孔隙,並經過熱處理程序來改變二氧化鈦的折射率。實驗結果顯示膠體粒子與間隙之折射率比值為1.425時,具有光子能隙特性,且隨著折射率比值的提高,能隙位置會朝向高波長的地方移動。

    The experiment is that we use the Stöber process to synthesize SiO2 particles of various sizes. Then, we use them to prepare the colloidal crystals of opal structure by the drop-coating method.
    The dispersity of colloidal crystals in suspensions relies on the zeta potential. The zeta potential of colloidal particles is changed with the different pH of suspensions. It is founded that to add small amount of NaCl(aq) or HCl(aq) to adjust the zeta potential of colloidal particles does not affect the self-assembly of colloidal crystals. But if we add large amount of electrolyte, the aggregation will occur due to the decreasing of zeta potential. And this makes the self-assembly of colloidal crystals impossible. In addition, the temperature and the relative humidity in self-assembly procedure will also determine the quality of colloidal crystals. The colloidal particles in suspensions will collide each other all the time based on the Brownian motion. The increasing of reaction temperature will enhance the collision frequency of colloidal particles leading to receive disordered colloidal crystals. But when the reaction temperature is too low, the kinetic energy of colloidal particles is insufficient. And this also can not get ordered colloidal crystals. So the temperature of reaction is the key point to the drop-coating method. With the particle size decreases, the proper reaction temperature for self-assembly decreases too. Besides, the relative humidity also affects the structure of colloidal crystals because it affects the evaporation rate of the droplet. Due to Higher relative humidity represents lower evaporation rate, the colloidal particles in central area of droplet can not be brought to peripheral area of droplet. With the particle concentration increasing in central area of droplet, the Van der Waals attractive force between particles also increases. Finally, it can only get order array in peripheral area of colloidal crystal because of aggregation occurring in central area. This phenomenon can be improved by declining relative humidity or increasing evaporation rate. The experiment also found that the thickness of colloidal crystals is more uniform in low relative humidity condition. It would be benefit to the following analysis and application.
    The second part of this research is to investigate the optical properties of colloidal crystals synthesized by drop-coating method. The optical analysis shows that there is a band gap in the photonic crystal. The photonic band gap is related to the size of colloidal particles and the incident angle of light. When the particle size increases, the photonic band gap will shift to high wavelength. However, when incident angle of light increases, the photonic band gap will shift to low wavelength. Finally, we discuss the refractive index ratio between colloidal particles and pores. Titanium dioxide with high refractive index will fill into the pores of colloidal crystals. And then changes the refractive index of titanium dioxide by way of heating treatment. The experiment represents that the refractive index ratio between particles and pores is 1.425, which has photonic band gap phenomenon. With the refractive index ratio increasing, photonic band gap will produce red shift.

    摘要 I Abstract III 致謝 V 表目錄 IX 圖目錄 X 第一章、前言 1 1.1 動機 1 1.2 研究方法與目的 2 第二章、文獻回顧 3 2.1 光子晶體之性質與應用 3 2.1.1 光子晶體簡介 3 2.1.2 光子晶體之光學特性 9 2.1.3 光子晶體的製備 12 2.1.3.1 以膠體粒子自組裝法製備光子晶體 12 2.1.3.2 自然沉降法 14 2.1.3.3 垂直沉積法 14 2.1.3.4 等溫加熱蒸發誘導自組裝法 16 2.1.3.5 滴定塗裝法 16 2.1.4 反蛋白石結構之光子晶體 18 2.1.4.1 溶膠-凝膠法 18 2.1.4.2 滲透法 20 2.1.4.3 化學氣相沉積法 20 2.1.5 光子晶體的運用 22 2.2 球形粒子製備方法:溶膠-凝膠法 23 2.2.1 均一粒徑二氧化矽膠體球之製備 24 2.3 影響滴定塗裝法之相關參數 27 2.3.1 凡德瓦爾力與靜電排斥力 27 2.3.2 溫度 32 2.3.3 相對溼度 35 第三章、 實驗方法與步驟 36 3.1 均一粒徑球形二氧化矽之製備 36 3.2 膠體晶體之製備 38 3.3 製備二氧化矽-二氧化鈦膠體晶體 40 3.4 性質量測與分析 42 第四章、結果與討論 44 4.1 均一粒徑二氧化矽膠體球之製備 44 4.1.1 氨水濃度對二氧化矽粒徑大小的影響 45 4.1.2 成核階段TEOS添加量與TEOS添加速率對二氧化矽粒徑大小的影響 45 4.1.3 二氧化矽膠體球粒徑均一性之控制 47 4.2 影響滴定塗裝法之相關參數探討 51 4.2.1 懸浮液pH值對膠體粒子行自組裝的影響 51 4.2.2 溫度對膠體粒子行自組裝的影響 58 4.2.3 相對溼度對膠體粒子行自組裝的影響 66 4.3 二氧化矽-二氧化鈦膠體晶體之製備 72 4.4 膠體晶體的光學性質分析 76 4.4.1 入射光角度的影響 76 4.4.2 粒徑的影響 77 4.4.3 有效折射率的影響 81 第五章、結論 87 參考文獻 89

    1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, 58, 2059 (1987).
    2. T. Taton, D. Norris, “Defective promise in photonics”, Nature, 416, 685 (2002).
    3. S. I. Matsushita, T. Miwa, D. A. Tryk and A. Fujishima, “New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles”, Langmuir, 14, 6441 (1998).
    4. G. A. Ozin, S. M. Yang, “The race for the photonic chip: colloidal crystal assembly in silicon wafers”, Advanced Functional Materials, 11, 95 (2001).
    5. R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure”, Advanced Materials, 9, 257 (1997).
    6. P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness”, Chemistry of Materials, 11, 2132 (1999).
    7. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris,Q. Yan, Z. Zhou, X. S. Zhao, “On-chip natural assembly of silicon photonic bandgap crystals”, Nature,414, 289 (2001).
    8. Q. Yan, Z. Zhou, and X. S. Zhao, “Inward-Growing Self-Assembly of Colloidal Crystal Films”, Langmuir, 21, 3158 (2005).
    9. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, 58, 2486 (1987).
    10. K. M. Ho, C. T. Chan, C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Physical Review Letters, 65, 3152 (1990).
    11. E.Yablonovitch, T. J.Gmitter, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms”,Physical Review Letters, 67, 2295 (1991).
    12. J. C. Knight, T. A. Birks, B. J. Mangan, P. St. J. Russell, “Microstructured silica as an optical-fiber material”, MRS Bulletin, 8, 614 (2001).
    13. A. Polman, P. Wiltzius, “Materials science aspects of photonic crystals”, MRSBulletin, 8, 608 (2001).
    14. A. J. Turberfield, “Photonic crystals made by holographic lithography”, MRS Bulletin, 8, 632 (2001).
    15. T. Taton, D. Norris, “Defective promise in photonics”, Nature, 416, 685 (2002).
    16. P. St. J. Russell, "Photonic crystal fibers," Science, 299, 358 (2003).
    17. E. Yablonovitch,“Photonic crystal: semiconductors of light”, Scientific American, 12, 35 (2001).
    18. 鐘儀文,以膠體製程製備光子晶體及其性質之探討,國立成功大學材料及工程學系,博士論文,中華民國95年。
    19. P. G. Hewitt, “Conceptual physics, eighth edition”, Wesley, 27, 496 (1998).
    20. P. A. Hiltner, I. M. Krieger, “Diffraction of light by ordered suspensions” The Journal of Physical Chemistry, 73, 2386 (1969).
    21. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, D. M. Bloom, “Teraherz Spectroscopy of 3-Dimensional Photonic Band-gap Crystals.”, Optics Letters, 19, 1155 (1994).
    22. J. G. Fleming, S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95μm”, Optics Letters, 24, 49 (1999).
    23. A. van Blaaderen, “From the de broglie to visible wavelengths: manipulating electrons and photons with colloids”, MRS Bull, 23, 39 (1998).
    24. A. D. Dinsmore, J. C. Crocker, A. G. Yodh, “Self-assembly of colloidal crystals”, Current Opinion in Colloidal and Interface Science, 3, 5 (1998).
    25. A. P. Gast, W. B. Russel, “Simple ordering in complex fluids- colloidal particles suspended in solution provide intriguing models for studying phase transitions”, Physics Today, 51, 24 (1998).
    26. Y. Monovoukas, G. G. Fuller, A. P. Gast, “Optical anisotropy in colloidal crystals”, Journal of Chemical Physics, 93, 8294 (1990).
    27. W. Hongkai, R. T. Venkat, W. Sue, M. W. George, “Using hierarchical self-assembly to form three-dimensional lattices of spheres”, Journal of the American Chemical Society, 124, 14495 (2002).
    28. L. V. Woodcock, “Entropy difference between crystal phases”, Nature, 388, 235 (1997).
    29. V. Kitaev, G. A. Ozin, “Self-Assembly Surface Patterns of Binary Colloidal Crystals”, Advanced Materials, 15, No. 1, January 3 (2003).
    30. 蔡佩樺,以等溫加熱蒸發誘導自組裝法製備一元及二元膠體晶體之探討,國立成功大學資源工程學系,碩士論文,中華民國99年。
    31. J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic Crystal: Molding the Flow of Light”, Princeton University Press, Princeton, NJ (1995).
    32. Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J. ,”Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials”, Advanced Materials, 11, 1261.(1999)
    33. A. Stein, R. C. Schroden,“Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond”, Current Opinion in Solid State and Materials Science, 5, 553 (2001).
    34. Judith E. G. J. Wijnhoven, L. Bechger, Willem L. Vos, “Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania”, Chemical Material, 13, 4486 (2001).
    35. Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates”, Superlattices and Microstructures, 40, 155 (2006).
    36. H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, V. Fornes, “Germanium FCC Structure from a Colloidal Crystal Template”, Langmuir, 16, 4405 (2000).
    37. Y. Zhu, H. Cao, L. Tang, X. Yang, C. Li, “Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications”, Electrochimica Acta, 54, 2823 (2009).
    38. Q. Li, J. K. Shangw, “Inverse Opal Structure of Nitrogen-Doped Titanium Oxide with Enhanced Visible-Light Photocatalytic Activity”, Journal of the American Chemical Society, 91, 660 (2008).
    39. W. Dong, H. J. Bongard, F. Marlow, “New Type of Inverse Opals: Titania With Skeleton Structure”, Chemical Material, 15, 568 (2003).
    40. Q.Meng, Z.Gu, O.Sato, A.Fujishima, “Fabrication of Highly Ordered Porous Structures”, Applied Physics Letters, 77, 4313 (2000).
    41. A. Z.Anvar, R. H.Baughman, “Carbon Structures with Three-dimensional Periodicity at Optical Wavelengths”, Science, 282, 897 (1998).
    42. H. Míguez, E. Chomski, F. García-Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Drie,“Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition”, Advanced Materials, 13, 1634 (2001).
    43. M. L. Q. Liao, Y. L. Z. Li, J. Wang, Y. Song, “A white-lighting LED system with a highly efficient thin luminous film,” Applied Physics A, 98, 85 (2010).
    44. C. L. Huisman, J. Schoonman, A. Goossens, “The application of inverse titania opals in nanostructured solar cells”, Solar Energy Materials and Solar Cells, 85, 115 (2005).
    45. C. J. Brink, G. W. Scherer, “Sol-gel science,” Academic Press (1990).
    46. C. Sanchez, J. Livage, M.Henry, F. J.Babonneau, “Chemical modification of alkoxide precursors”, Journal of Non-Crystalline Solids, 100, 65 (1988).
    47. J. P.Chatelon, C.Terrier, J. A.Roger, “Influence of elaboration parameters on the properties of tin oxide films obtained by the sol-gel process”, Journal of Sol-Gel Science and Technology, 10, 55 (1997).
    48. W. Stöber, A. finks, E. bohn, “Controlled growth of monodispersed silica spheres in the micron size range,” Journal of Colloidal and Interface Science, 26, 62 (1968).
    49. S. K. Park, K. D. Kim, H. T. Kim, “Preparation of silica nanoparticles: determination of the Preparation of silica nanoparticles: determination of the”, Colloids and Surfaces , 197, 7 (2002).
    50. S.L. Chen, P. Dong, G.H. Yang, J. J. Yang, “Kinetics of formation of monodispersed colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate,” Industrial & Engineering Chemistry Research, 35, 4487 (1996).
    51. P. C. Hiemenz, “Principle of colloid and surface chemistry,” second edition, New York (1986).
    52. A. Pettersson, G. Marino, A. Pursigeimo, J. B. Rosengolm, “Electrosteric stabilization of Al2O3, ZrO2 and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte,” Journal of Colloid and Interface Science, 228, 73 (2000).
    53. J. S. Reed, “Principles of ceramics prosessing,” Second edition, New York (1986).
    54. D. J. Shaw, “Introduction to Colloid and Surface Chemistry”, forth edition, Oxford (1980).
    55. 王子瑜、曹恒光,”布朗運動、郎之萬方程式、與布朗動力學”,物理雙月刊,456,2005年6月。
    56. S. K. Park, K. D. Kim, H. T. Kim, “Preparation of silica nanoparticles: determination of the Preparation of silica nanoparticles”, Colloids and Surfaces, 197, 7 (2002).
    57. J. A. Lewis, “Colloidal processing of ceramics”, Journal of the American Ceramic Society, 83, 2341 (2000).
    58. Derjaguin, Landau, Verwey and Overbeek theory (DLVO theory) (http://www.malvern.com/LabEng/industry/colloids/dlvo_theory.htm)
    59. G. A. McConnell, A. P. Gast, J. S. Huang, S. D. Smith,”Disorder-order transitions in soft sphere polymer micelles”, Physical Review Letters, 71, 2102 (1993).
    60. G. A. McConnell, M. Y. Lin, A. P. Gast,”long range order in polymeric micelles under steady shear”, Macromolecules, 28, 6754 (1995).
    61. S. L. Kuai, X. F. Hub, V. V. Truong,”Synthesis of thin film titania photonic crystals through a dip-infiltrating sol-gel process”, Journal of crystal growth, 259, 404 (2003).
    62. F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres”, Langmuir, 18, 1942 (2002).
    63. S. J. Wilson, M. H. Stacey, “The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies”, Journal of Colloid and Interface Science, 82, 507 (1981).

    下載圖示 校內:2013-08-24公開
    校外:2013-08-24公開
    QR CODE