| 研究生: |
侯舜芸 Hou, Shun-Yun |
|---|---|
| 論文名稱: |
在肝癌中CD133+幹細胞為登革病毒首要感染細胞 CD133+ stem cells are the primary target cells for dengue virus infection in hepatocellular carcinoma |
| 指導教授: |
彭貴春
Perng, Guey-Chuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 肝癌 、癌幹細胞 、登革病毒 |
| 外文關鍵詞: | hepatocellular carcinoma, cancer stem cell, dengue virus, permissive cells |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌目前是台灣人民排名第二名容易發生的癌症,僅次於肺癌,同時致死率也是位居前十名,肝癌病患經過手術切除、放射性或是化療藥物治療後,相較於其他癌症,仍然有高復發率。復發的原因有許多種,但其中最令人頭疼的原因為癌幹細胞,此種類幹細胞在癌細胞族群中佔的比例極少,癌幹細胞是從一般幹細胞突變而來,因此它具有一般幹細胞的特性像是自我更新以及分化的能力,在經過治療後形成的微環境,會促使癌幹細胞的分化,進而形成腫瘤,在肝癌中的癌幹細胞主要來源有本身的肝幹細胞以及來自於骨髓的幹細胞。然而,癌幹細胞對於部分的化療藥物是具有抗藥性的,因此在進行化療治療後,並無法完全去除癌幹細胞,導致癌症復發。在過去的研究中發現,在小鼠體內登革病毒可以感染具有豐富造血幹細胞的骨髓,因此,我們假設癌幹細胞與造血幹細胞有類似的特性,或許登革病毒也有能力感染癌幹細胞,對癌幹細胞造成影響。在本篇研究我們拿取肝癌病人的腫瘤組織和非腫瘤組織進行登革病毒感染。首先,我們發現腫瘤細胞較容易受登革病毒感染,能有效的產出高於非腫瘤細胞大約10-100倍的病毒量,接著我們使用同時表現於造血幹細胞及癌幹細胞的幹細胞標誌(CD133, CD34, CD117)與腫瘤細胞產生的病毒量進行分析,發現腫瘤細胞產生的登革病毒量與幹細胞族群有顯著的正相關,而非細胞族群則是負相關,並且發現帶有CD133標誌的細胞在腫瘤細胞族群較非腫瘤細胞族群多,接著我們將帶有CD133標誌的腫瘤細胞分離出並進行登革病毒感染,研究結果顯示在腫瘤細胞中帶有CD133標誌的細胞確實可被登革病毒感染,進一步與總腫瘤細胞族群產生的登革病毒分析發現,CD133細胞是登革病毒在肝癌第一個感染並產生病毒的目標細胞。綜合上述實驗,我們發現在肝癌腫瘤細胞中,登革病毒確實可以感染帶有CD133標誌的幹細胞,這項發現可以再延伸探討受登革病毒感染對於此幹細胞的致瘤性影響,或許,在未來可以透過登革病毒並用於治療肝癌癌幹細胞,藉此降低復發機率。
Hepatocellular carcinoma (HCC) is one of the top ten lethal cancers in Taiwan. It is easy to relapse after HCC patients were treated. Cancerous recurrence is related to cancer stem cells (CSCs). CSCs are minor populations which present the characteristics of stem/ progenitor cells such as self-renewal and differentiation abilities in tumor. CSCs in HCC are originally from hepatic stem cell and bone marrow stem cells. In previous studies, the hematopoietic progenitor cells of bone marrow are important for dengue virus (DENV) infection. We hypothesize that CSCs of HCC can be infected by DENV if they have similar property with hematopoietic progenitor cells. The non-tumor and tumor tissues of HCC patients were used in this research after signing informed consent. Cells were extracted from these tissues prior to DENV study. Results showed that the cells from tumor tissues were highly permissive to DENV infection and produced approximately 10-100 folds higher viral titer than cells from the non-tumor appearance tissues. Both cells from the tumorous and non-tumor tissues were analyzed by flow cytometry.to determine the stem cell populations Results showed that cells populations containing CD133+ and/or CD117+ and/or CD34+ stem cell markers were positively correlation with viral titers while the negative subsets demonstrated to be negative correlation. FACS results revealed that CD133+ cells appeared to be much more in tumor tissues compared to the non-tumor tissues. Furthermore, CD133+ cells sorted out from tumor tissues by magnetic beads were highly permissive to DENV infection. Our tabulated results suggested that the CD133+ stem cells are likely the initial target for dengue virus infection in HCC. We will investigate the effect of DENV infection on HCC CD133 target cells, particularly on the tumorigenicity of the cell after DENV infection. If DENV can infect CSCs in HCC to affect their tumorigenicity, this become a possible candidate for anti-cancer treatment of HCC disease.
1. McGlynn, K.A., Petrick, J.L. & London, W.T. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clinics in Liver Disease 19, 223-238 (2015).
2. Dimitroulis, D., et al. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World Journal of Gastroenterology 23, 5282-5294 (2017).
3. Balogh, J., et al. Hepatocellular carcinoma: a review. Journal of Hepatocellular Carcinoma 3, 41-53 (2016).
4. Raza, A. & Sood, G.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World Journal of Gastroenterology : WJG 20, 4115-4127 (2014).
5. Tabrizian, P., Jibara, G., Shrager, B., Schwartz, M. & Roayaie, S. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Annals of Surgery 261, 947-955 (2015).
6. Yin, S., et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer 120, 1444-1450 (2007).
7. von Felden, J., et al. Circulating tumor cells as liquid biomarker for high HCC recurrence risk after curative liver resection. Oncotarget 8, 89978-89987 (2017).
8. Sala, M., et al. High pathological risk of recurrence after surgical resection for hepatocellular carcinoma: an indication for salvage liver transplantation. Liver Transplantation : Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 10, 1294-1300 (2004).
9. Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacology & Therapeutics 160, 145-158 (2016).
10. Guo, W., Lasky, J.L., 3rd & Wu, H. Cancer stem cells. Pediatric Research 59, 59r-64r (2006).
11. Bu, Y. & Cao, D. The origin of cancer stem cells. Frontiers in Bioscience (Scholar edition) 4, 819-830 (2012).
12. Li, S. & Li, Q.I.N. Cancer stem cells and tumor metastasis. International Journal of Oncology 44, 1806-1812 (2014).
13. Peitzsch, C., Tyutyunnykova, A., Pantel, K. & Dubrovska, A. Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer Biology 44, 10-24 (2017).
14. Bao, B., Ahmad, A., Azmi, A.S., Ali, S. & Sarkar, F.H. Cancer Stem Cells (CSCs) and Mechanisms of Their Regulation: Implications for Cancer Therapy. Current Protocols in Pharmacology / editorial board, S.J. Enna (editor-in-chief) ... [et al.] 0 14, Unit-14.25 (2013).
15. Taguchi, T. Chemo-occlusion for the treatment of liver cancer. A new technique using degradable starch microspheres. Clinical Pharmacokinetics 26, 275-291 (1994).
16. Shiozawa, Y., Nie, B., Pienta, K.J., Morgan, T.M. & Taichman, R.S. Cancer Stem Cells and their Role in Metastasis. Pharmacology & Therapeutics 138, 285-293 (2013).
17. Chang, J.C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine 95, S20-25 (2016).
18. Ciurea, M.E., et al. Cancer Stem Cells: Biological Functions and Therapeutically Targeting. International Journal of Molecular Sciences 15, 8169-8185 (2014).
19. Jones, R.J. & Armstrong, S.A. Cancer Stem Cells in Hematopoietic Malignancies. Biology of Blood and Marrow Transplantation : Journal of the American Society for Blood and Marrow Transplantation 14, 12-16 (2008).
20. Karsten, U. & Goletz, S. What makes cancer stem cell markers different? SpringerPlus 2, 301 (2013).
21. Sun, J.H., Luo, Q., Liu, L.L. & Song, G.B. Liver cancer stem cell markers: Progression and therapeutic implications. World Journal of Gastroenterology 22, 3547-3557 (2016).
22. Yin, S., et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer 120, 1444-1450 (2007).
23. Galizia, G., et al. Combined CD133/CD44 expression as a prognostic indicator of disease-free survival in patients with colorectal cancer. Archives of Surgery (Chicago, Ill. : 1960) 147, 18-24 (2012).
24. Mourao, M.P., Lacerda, M.V., Macedo, V.O. & Santos, J.B. Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon. Platelets 18, 605-612 (2007).
25. Schexneider, K.I. & Reedy, E.A. Thrombocytopenia in dengue fever. Current Hematology Reports 4, 145-148 (2005).
26. Noisakran, S., et al. Infection of bone marrow cells by dengue virus in vivo. Experimental Hematology 40, 250-259.e254 (2012).
27. Lin, Y.L., et al. Infection of five human liver cell lines by dengue-2 virus. Journal of Medical Virology 60, 425-431 (2000).
28. Suksanpaisan, L., Cabrera-Hernandez, A. & Smith, D.R. Infection of human primary hepatocytes with dengue virus serotype 2. Journal of Medical Virology 79, 300-307 (2007).
29. Lang, J., Vera, D., Cheng, Y. & Tang, H. Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells. Stem Cell Reports 7, 341-354 (2016).
30. Lubin, J.A., Zhang, R.R. & Kuo, J.S. Zika Virus has Oncolytic Activity Against Glioblastoma Stem Cells. Neurosurgery 82, E113-E114 (2018).
31. Hou, Y., Zou, Q., Ge, R., Shen, F. & Wang, Y. The critical role of CD133(+)CD44(+/high) tumor cells in hematogenous metastasis of liver cancers. Cell Research 22, 259-272 (2012).
32. You, H., Ding, W. & Rountree, C.B. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology (Baltimore, Md.) 51, 1635-1644 (2010).
33. Yan, F., et al. Human embryonic stem cell-derived hepatoblasts are an optimal lineage stage for hepatitis C virus infection. Hepatology (Baltimore, Md.) 66, 717-735 (2017).
34. De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. & Landolfo, S. The interferon system: an overview. European Journal of Paediatric Neurology : EJPN : Official Journal of the European Paediatric Neurology Society 6 Suppl A, A41-46; discussion A55-48 (2002).
35. Liu, K., Hao, M., Ouyang, Y., Zheng, J. & Chen, D. CD133(+) cancer stem cells promoted by VEGF accelerate the recurrence of hepatocellular carcinoma. Scientific Reports 7, 41499 (2017).
36. Jiang, N., et al. Aberrantly regulated dysadherin and B-cell lymphoma 2/B-cell lymphoma 2-associated X enhances tumorigenesis and DNA targeting drug resistance of liver cancer stem cells. Molecular Medicine Reports 12, 7239-7246 (2015).
校內:2023-12-31公開