| 研究生: |
周建綱 Chou, Jan-Kung |
|---|---|
| 論文名稱: |
鐵鎳合金(Fe-2Ni)粉末冶金件之
高速變形行為分析 High Strain Rate Deformation of Fe-2Ni Alloy Powder Compacts |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 應變速率 、Fe-2Ni 粉末冶金件 、霍普金森撞擊試驗機 |
| 外文關鍵詞: | Strain Rate, Split-Hopkinson bar, Fe-2Ni Alloy Powder Compacts |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究主要是利用霍普金森撞擊試驗機,來探討Fe-2Ni粉末冶金件於高速撞擊下之塑性變形行為。實驗測試於室溫25℃,及應變速率分別為2500s-1、3250 s-1、4300 s-1、5550 s-1、8300s-1下進行,藉實驗數據和微觀結果,以瞭解應變速率對Fe-2Ni粉末冶金件的動態機械特性及相對微觀組織變化之影響。同時引用一合適之材料構成方程式,來描述Fe-2Ni粉末冶金件的常溫高速之塑變行為,以做為工程模擬與分析之用。
實驗結果顯示,應變速率及應變量對Fe-2Ni粉末冶金件的機械性質影響甚鉅,其塑流應力值隨著應變速率的增加而上升,且隨著應變量的增加而上升。相同地,其熱活化體積亦會隨著應變速率之增加而上升,而應變速率敏感性係數及加工硬化率則有相反之趨勢。隨著應變量的增加,加工硬化率及應變速率敏感性皆呈現下降的趨勢,而熱活化體積則會上升。由OM觀察可知,隨著應變速率的增加,晶粒有細化的現象。最後,藉由Khan-Huang-Liang模式之構成方程式,其可以很精確的來描述Fe-2Ni粉末冶金件於常溫高速撞擊下之塑變行為。
This study uses a Split-Hopkinson bar to investigate the plastic deformation behaviour of Fe-2Ni Alloy Powder Compacts subjected to high strain rate loading. The present tests are performed under strain rates ranging from 2500s-1 to 6830s-1 at room temperature. Optical microscopy techniques are used to analyze the microstructure characteristics of the deformed specimens in order to determine the relationship between the mechanical and microstructural properties of Fe-2Ni Alloy Powder Compacts . The experimental results indicate that the mechanical properties of Fe-2Ni Alloy Powder Compacts depend significantly on the strain rates and strains. At room temperature, the flow stress and activation volume increase with increasing strain rate, while the strain rate sensitivity and work hardening coefficient decrease. OM analysis reveals that the grain size decreases as the strain rate increases. Finally, it is shown that the Khan-Huang-Liang constitutive equation with the experimentally determined specific material parameters successfully describes the plastic flow behaviour of Fe-2Ni Alloy Powder Compacts under the current test conditions.
1. H. Zhang and R. M. German, “The Role of Nickel in Iron Powder Injection Molding,” International Journal of Powder Metallurgy, Vol. 27, No. 3, pp.249-254, 1991.
2. M. Nakamura and K. Tsuya, “Effect of Heat Treatment on Structure and Mechanical Properties of Sintered Fe-Ni Alloys,” Powder Metallurgy, Vol. 26, No. 3, pp. 149-154, 1983.
3. T. Y. Chan and S. T. Lin, “Sintering of Elemental Carbonyl Iron and Carbonyl Nickel Powder Mixtures,” Journal of Materials Science, Vol. 32, No. 8, April , pp. 1963-1967, 1997.
4. H. Zhang and R. M. German, “Homogeneity and Properties of Injection Moulded Fe-Ni Alloy,” Metal Powder Report, Vol. 56, No. 6, pp. 18-22, June, 2001.
5. 詹添印,“燒結鐵鎳合金物理性質與結構之關係”,技術學刊,12卷,4期,頁561-567,民國八十六年。
6. K. V. Sudhakar, P. Sampathkumaran and E. S. Dwarakadasa, “Dry Sliding Wear in High Density Fe-2%Ni Based P/M Alloys,” Wear, Vol. 242, No. 1, July, pp. 207-212, 2000.
7. H. Zhang and R. M. German, “Homogenization and Microstructure Effects on the Properties of Injection Molded Fe-2Ni Steel,” Metallurgical Transactions A, Vol. 23A, pp.377-382, January 1992.
8. H. Zhang, R. M. German, K.F. Hens and D. Lee, “Sintering Temperature and the Mechanical Properties of Injection Molded Fe-2Ni Steel,” Powder Metallurgy International, Vol. 22, No. 6, pp. 15-18, December, 1990.
9. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proceedings of the Physical Society, Vol. 62, pp. 676-699, 1949.
10. B. M. Butcher and C. K. Karnes, “Strain Rate Effects in Metals,” Journal of Applied Physics, Vol. 37, pp. 402-411,1966.
11. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
12. Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rates of Strain, (ed. J. Harding), pp. 257-265, 1989.
13. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” Journal of Applied Physics, Vol. 51, No. 3, pp. 1498-1504, 1980.
14. Bocchini, G. F. “Influences of Pority on the Characteristics of Sintered Materials,” Metal Powder Report, Vol. 41, No. 11, pp. 829-832, 1986.
15. I. Bertilsson and B. Karlsson, “Dynamic Properties of Sintered Stee,l” Powder Metallurgy, Vol. 30, No. 3, pp. 183-188, 1987.
16. D. N. Lee and H. S. Kim, “Plastic Yield Behaviour of Porous Metals,” Powder Metallurgy, Vol. 35, No. 4, pp. 275-279, 1992.
17. G. Straffelini, V. Fontanari and A. Molinari, “Influence of Microstructure on Impact Behaviour of Sintered Ferrous Materials,” Powder Metallurgy, Vol. 38, No. 1, pp. 45-51, 1995.
18. I. Bertilsson and B. Karlsson, ”Mechanical Properties of Sintered Steels,” Scandinavian Journal of Metallurgy, Vol. 11, pp. 267-275, 1982.
19. A. Salak, Ferrous Powder Metallurgy, Cambridge International Science Pub., pp. 1-4, 1980.
20. R. M. German, Powder Metallurgy, Metal Powder Industries Federation, Princeton,NJ, pp. 20-21, 1994.
21. 汪建民,粉末冶金技術手冊,頁,18-23,中華民國粉末冶金協會,民國八十年。
22. T. J. Zhang, J. Y. Yang, Z. H. Zhou, J. Zhang and K. Cui. “Mechanical Alloying Process During High Energy Ball Milling,” Powder Metallurgical Technology, Vol.14, No. 1, pp. 3-8, 1996.
23. K. Erhard, Metals Handbook, American Society for Metals, Vol. 7, pp. 91-93. 1984.
24. K. Erhard, Metals Handbook, American Society for Metals, Vol. 7, pp. 134-138. 1984.
25. R. M. German, Powder Metallurgy, Metal Powder Industries Federation, Princeton,NJ, pp. 27-79, 1994.
26. R. A. Priemon and J. L. Cornillot, 1983 Annual Book Of ASTM Standards, American Society For Testing And Materials, Vol. 02.05, pp. 59-67, 1983.
27. A. Salak, Ferrous Powder Metallurgy, Cambridge International Science Pub., pp. 62-102, 1980.
28. 王遐,粉末製造與傳統粉末加工成形,全華科技圖書股份有限公司,頁,79-95,民國81年。
29. 汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁,101-103,民國八十年。
30. G.S. Upadhyaya, Sintered Metallic and Ceramic Materials, John Wiley & Sons, pp.25-62, 2000.
31. J. S. Hirschhorn, Introduction to Powder Metallurgy, American Powder Metallurgy Institute, pp.155-271, 1969.
32. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
33. M. A. Meyers, Elastic Waves in Dynamics Behavior of Materials, John Wiley & Sons, pp. 23-65, 1994.
34. H. N. Azari, G. S. Murty and G. S. Upadhyana, “High Temperature Deformation of Rapidly Solidified 7091 Powder Metallrugy Aluminum Alloy,” Materials Science and Technology, Vol. 9, No. 8, pp. 686-690, 1993.
35. M. L. Lovato, and M. G. Stout, “Compression Testing Techniques to Determine the Stress/Strain Behaviour of Metals Subject to Finite Deformation,” Metallurgical Transaction A, Vol. 23A, pp. 935-951, 1992.
36. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects,” Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973.
37. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
38. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
39. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
40. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.
41. J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
42. Y. Bai and B. Dodd, Adiabatic Shear
Localization, Pergamon Press, Oxford, pp. 1-3, 1992.
43. R. D. Curran, L. Seaman and D. A. Shockey, Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications, pp. 22-26, 1980.
44. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
45. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
46. V. P. Chougule and G. S. Tendolkar, “Elastic Modulus and Ductility of Sintered Iron,” Planseeberichte fuer Pulvermetallurgie, Vol. 21, No. 1, pp. 34-43, 1973.
47. Z. Hashin and S. Shtrikman, “A variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials,” Journal of Mechanics and Physics of Solids, Vol. 11, pp. 127-140, 1963.
48. 黃忠良,多孔材料學,復漢出版社,頁,191-199,民國79年。
49. B. Budiansky, “Thermal and Thermoelastic Properties of Isotropic Composites,” Journal of Composite Materials, Vol. 4, pp. 286-295, 1970.
50. H. N. Han, Y. G. Lee, K. H. Oh and D. N. Lee, “Analysis of Hot Forging of Porous Metals,” Materials Science and Engineering A, Vol. A206, No. 1, pp. 81-89, 1996.
51. A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1-Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 99, No. 1 ,pp.2-15, 1977.
52. V. Tvergaard, “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions,” International Journal of Fracture, pp. 389-407, 1981.
53. V. Tvergaard and A, Needleman, “Effect of Material Rate Sensitivity on Failure Modes in the Charpy V-Notch Test,” Journal of Mechanics and Physics of Solids, Vol. 34, No. 3, pp. 213-241, 1986.
54. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
55. J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.
56. G. R. Johnson and W. H. Cook, In Processing of Seventh International Symposium Om Ballistics, The Netherlands, pp. 541-562, 1983.
57. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
58. F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C Metals,” Acta Metallurgica et Materialia, Vol. 40, No. 8, pp. 1803-1808, 1992.
59. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” High strain rate effects on polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.
60. A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron And Copper Mixure : Behavior And Constitutive Modeling Over A Wide Range of Strain Rates,” International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
61. R. Liang and A. S. Khan, “A Critical Review of Experimental Results And Constitutive Models For BCC And FCC Metals Over A Wide Range of Strain Rates And Temperatures,” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
62. G. E. Dieter, Thermally Activated Deformation, Mechanical Metallurgy, pp. 310-315, 1988.
63. E. Bayraktar and S. Altintas, “Some Problems in Steel Sheet Forming Process,” Journal of Materials Processing Technology, Vol. 80-81, pp.83-89, 1998.
64. S. I. Kim and Y. C. Yoo, “Dynamic Recrystallization Behavior of AISI 304 Stainless Steel,” Materials Science and Engineering A, Vol. 311, No. 1-2, pp. 108-113, 2001.
65. W. Roberts, H. Boden and B. Ahlblom, “Dynamic Recrystallization Kinetics,” Metal Science, Vol. 13, No. 3-4, pp. 195-204, 1979.
66. V. F. Nesterenko, M. A. Meyers, J.C.
Lasalvia, M. P. Bondar, Y. J. Chen and Y. L. Lukyanov, ”Shear Localization and Recrystallization in High-Strain, High-Strain Rate Deformation of Tantalum,” Materials Science and Engineering A., Vol. 229, No. 1-2, pp. 23-41, 1997.
67. B. Derby, “The Dependence of Grain Size on Stress During Dynamic Recrystallization,” Acta Metallurgica et Materialia, Vol. 39, No. 5, pp. 955-962, 1991.
68. T. Sakai and J. J. Jonas, “Dynamic Recrystallization: Mechanical and Microstructural Considerations,” Acta Metallurgy, Vol. 32, No. 2, pp. 189-209, 1984.