| 研究生: |
吳威霖 Wu, Wei-Lin |
|---|---|
| 論文名稱: |
熱軋層流冷卻系統溫度均勻性與鋼帶平坦度分析 The analysis of temperature uniformity and flatness of strip on the laminar cooling |
| 指導教授: |
王偉成
Wang, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | Run-Out-Table 、熱軋鋼帶 、層流冷卻 、相變化 、鋼帶變形 |
| 外文關鍵詞: | Run-Out-Table, hot strip, laminar cooling, phase transformation, strip deformation |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱軋鋼帶的冶金關鍵在於捲取前的溫度控制,Run-Out-Table (ROT)為熱軋過程中的主要影響溫度的冷卻機制,然而在淬火過程中複雜的熱傳機制使鋼帶溫度不均勻,當溫度均勻性出現較大的變異時會產生的殘留應力會使鋼板扭曲變形。而為了改善上述的問題,本研究採取數值計算探討熱軋鋼帶在層流冷卻中溫度歷程與鋼帶變形,因為傳統熱軋鋼帶數值模型有缺陷只針對厚度方向的熱傳,故整理出厚度與寬度上的熱傳並耦合組織轉化的潛熱。使用Simufact套裝軟體作為計算模擬平台,並藉由JMatPro的材料性質輸出與偶合熱傳、應力及微顯組織轉化的特點,將研究聚焦於溫度均勻性與鋼帶內部殘留應力的關係,該模型的計算結果與實測值相似以驗證,能夠準確地預測鋼帶冷卻後的溫度分佈與最終組織,得到最佳的水冷比改善鋼帶平坦度的問題。
The temperature before the down coiler is a metallurgical key for hot rolled strip. Run-Out-Table (ROT) is the main cooling mechanism in the hot rolling process. However, because the heat transfer actions are complex and during quenching process , a large variation of the temperature along the strip would produce residual stress, resulting the strip distortion. In order to improve the above problem, this study takes numerical calculation to analysis temperature history and deformation during laminar cooling. Thus, the traditional hot-rolled strip numerical model is defective only for the thickness of the heat transfer so that it would sort out the latent heat of phase transformation and the heat transfer along width direction. The commercial software SimufactTM v12 was used to simulation calculating. Moreover, there is a feature coupled heat transfer, stress and microstructure evolution in simulation and with the material performance output from JmatPro. The study focuses on the relationship between temperature uniformity and residual stress in the strip. The simulated results of this model are similar to the measured values to verify that the final temperature and microstructure distributions. Finally, obtain the best rate of water cooling between top bank and bottom bank, improving the problem of strip flatness.
1. Fujimoto, H., Suzuki, Yuhei, Hama, Takayuki, Takuda, Hirohiko, Flow Characteristics of Circular Liquid Jet Impinging on a Moving Surface Covered with a Water Film. ISIJ International, 2011. 51(9): p. 1497-1505.
2. Zumbrunnen, D.A., F.P. Incropera, and R. Viskanta, A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate. Wärme - und Stoffübertragung, 1992. 27(5): p. 311-319.
3. Han, H., Model for cooling and phase transformation behaviour of transformation induced plasticity steel on runout table in hot strip mill. Materials science and technology, 2001. 17(6): p. 721-726.
4. Liu, Z.-H. and J. Wang, Study on film boiling heat transfer for water jet impinging on high temperature flat plate. International Journal of Heat and Mass Transfer, 2001. 44(13): p. 2475-2481.
5. Liu, E.-y., Peng, Liang-gui, Yuan, Guo, Wang, Zhao-dong, Zhang, Dian-hua, Wang, Guo-dong, Advanced run-out table cooling technology based on ultra fast cooling and laminar cooling in hot strip mill. Journal of Central South University, 2012. 19(5): p. 1341-1345.
6. Chen Zhan-feng, L.P.-b., Li Jun-hong, Research on simulaiotn system for hot strip laminar cooling. journal of HKunming University, 2007.
7. Wang Ping, H.Z.-y., Yin Gui-quan, Zhao Xue-wu, Wang Guang-peng, Application Analysis of Tmperature Control Models of Laminar Cooling for Hot Rolled Strip. Journal of Iron and Steel Research, 2007.
8. Cai Zheng, W.g.-d., Liu Xiang-hua, A coupling analysis of temperature and phase transformation during cooling of hot-rolled strip. Journal of Plasticity engineering, 2000. 7(2): p. 16-19.
9. Chen, S.-x., J. Zou, and X. Fu, Coupled models of heat transfer and phase transformation for the run-out table in hot rolling. Journal of Zhejiang University SCIENCE A, 2008. 9(7): p. 932-939.
10. Kwon, M.J. and I.S. Park, Numerical Study of the Effect of Nozzle Arrangement on Cooling Process in Running Hot Steel Strip after Hot Rolling. ISIJ International, 2013. 53(6): p. 1042-1046.
11. Zheng, Y., S. Li, and X. Wang, Distributed model predictive control for plant-wide hot-rolled strip laminar cooling process. Journal of Process Control, 2009. 19(9): p. 1427-1437.
12. Guo, R.-M., Heat transfer of laminar flow cooling during strip acceleration on hot strip mill runout tables. Iron and Steelmaker, 1993. 20: p. 49-49.
13. Otomo, A., S. Yasunaga, and R. Ishida, Cooling characteristics of steel sheet by water film in hot strip mill. Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.), 1987. 73(8): p. 996-1003.
14. Karwa, N., Experimental study of water jet impingement cooling of hot steel plates. 2012.
15. Cho, M., B. Thomas, and P. Lee, Three-Dimensional Numerical Study of Impinging Water Jets in Runout Table Cooling Processes. Metallurgical and Materials Transactions B, 2008. 39(4): p. 593-602.
16. Wei Lo, C.-T.C., Min-Shu Lin,Chao-Fa Ke, Study on cooling uniformity for the accelerated cooling process in hot rolled steel plate. AIST.
17. Zhi Ying, L.X., Simulation and analysis on the edge temperature of hot rolled strip during laminar cooling. Sciencepaper
18. Fall, A., Regnier, M. C. ,Manga, P. S., Ramassamy, C., Tonnon, E, Romberger, C., Xiao Yuefa, J., Tools for continuous improvement of the plate quenching process. Revue de Métallurgie, 2011. 108(5): p. 313-321.
19. Vader, D.T., F.P. Incropera, and R. Viskanta, Local convective heat transfer from a heated surface to an impinging, planar jet of water. International Journal of Heat and Mass Transfer, 1991. 34(3): p. 611-623.
20. Wolf, D.H., F.P. Incropera, and R. Viskanta, Local jet impingement boiling heat transfer. International Journal of Heat and Mass Transfer, 1996. 39(7): p. 1395-1406.
21. Biswas, S., S.-J. Chen, and A. Satyanarayana, Optimal Temperature Tracking for Accelerated Cooling Processes in Hot Rolling of Steel. Dynamics and Control, 1997. 7(4): p. 327-340.
22. Han, H.N., Lee, Jae Kon, Kim, Hong Joon, Jin, Young-Sool, A model for deformation, temperature and phase transformation behavior of steels on run-out table in hot strip mill. Journal of Materials Processing Technology, 2002. 128(1): p. 216-225.
23. Edalatpour, S., A. Saboonchi, and S. Hassanpour, Effect of phase transformation latent heat on prediction accuracy of strip laminar cooling. Journal of Materials Processing Technology, 2011. 211(11): p. 1776-1782.
24. Suebsomran, A. and S. Butdee, Cooling process on a run-out table by the simulation method. Case Studies in Thermal Engineering, 2013. 1(1): p. 51-56.
25. Shih-Kang Kuo , H.-H.C., Sung-Lin Chen , Wei Lo, Development of a residual stress sensor and its applications in steel product measurement. 2014.
26. Han, H.N. and J.K. Lee, A model for high carbon steel phase transformation and cooling behavior on run-out table of hot strip mill. Metals and Materials, 2000. 6(5): p. 401-406.
27. Byeon, J.W. and S.I. Kwun, Magnetic evaluation of microstructures and strength of eutectoid steel. Materials Transactions, 2003. 44(10): p. 2184-2190.
28. Kuo, S.-K., S.-Y. Lin, and C.-Y. Lu, Characterization of magnetic field rotation of steel sheet under uniaxial stress. Measurement, 2012. 45(5): p. 1239-1245.
29. Guo, C., Zheng, Delelopment of a residual stress sensor and its applications in steel product measurement
30. Wang Fengli, L.m., Zhang Shaojum, Wang Bangwen, Study on numerical simulation of control cooling medium steel plate and analysis on its deformation. Chinese journal of mechanical engineering 2003. 39(5): p. 111-115.
校內:2020-08-28公開