| 研究生: |
游瑞名 Yo, Jui-Ming |
|---|---|
| 論文名稱: |
整合溫度感測器於微型毛細泵吸環路系統之研究發展 Studies of Micro Capillary Pumped Loop System by Using Integrated Micro Temperature Sensors |
| 指導教授: |
王金燦
Wang, Chin-Tsann 呂宗行 Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 微型毛細泵吸環路 、微機電製程加工技術 、溫度感測器 |
| 外文關鍵詞: | MEMS Fabrication, Capillary Pumped Loop, micro temperature sensors |
| 相關次數: | 點閱:104 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細泵吸環路(capillary pumped loop, CPL)是利用工作流體的相變化,將熱由蒸發器(evaporator),經由蒸氣線(vapor line)傳遞至冷凝器(condenser),並使用毛細力作為驅動力,不需額外機械功驅動,將冷凝器泠凝液體經由液體線(liquid line) 泵吸回蒸發器而完成循環管路。本研究主要是以微機電製程加工技術(MEMS fabrication)於玻璃基材上製作出微型毛細泵吸環路(Micro-CPL),並將溫度感測器整合於環路中,進行工作流體溫度的量測,以充分掌握微型毛細泵吸環路的運作特性。
本研究首先利用理論分析探討環路幾何尺寸對微型毛細泵吸環路性能之影響,由環路理論分析結果,可發現主要壓降在於蒸氣線(vapor line)傳輸上面,當增加蒸氣線管道深度或是減短蒸氣線管道長度都能有效的降低蒸氣流經蒸汽線之壓降,進而提高熱傳量;透過視流觀察(observation of flow visualization)與利用感測器量測工作流體溫度可得知,無論在哪一個體積流率下,感測器S6與S9所量測得之溫度值(ΔT96)相差都約在20℃;蒸發器入口溫度變化隨著注入的體積流率越大,蒸發器入口所量測的溫度值也會越低。另外,在高溫熱融合(thermal bonding)晶片接合製程上常遇見的管道密封性不良等缺陷,可透過在流道周圍的微型方塊矩陣(micromachined matix of posts)設計來獲得改善。
Capillary Pumped Loop (CPL) is a sort of “two-phase heat transport device”. In this study, MEMS technology is used to fabricate a micro capillary pumped loop (μCPL) with temperature sensors that integrated in the micro channel. The basic principle of μCPL device is just like traditional heat pipe. It applies surface tension effect to drive cooling fluid from condenser to vapor grooves in μCPL. It can be used to cool high heat density equipments and high-level electronic devices, such as high-level CPU, GaAs wafer etc.
According the theoretical analysis, a higher vapor line height or shorter vapor line length will increase the heat transport of μCPL.
參考文獻
1 王士文, “微型毛細泵吸環路之蒸發區微流道設計與研製” , 國立清華大學工程與系統科學系碩士論文, 中華民國九十三年七月。
2 http://www.pcfin.com.tw/
3 J.Kirshberg, K. Yerkes, D. Trebotich and D. Lipmann, “Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-Level Temperature Control”, ASME MEMS-Vol.2, 2000.
4 K.Pettigrew, J.Kirshberg, K. Yerkes, D. Trebotich and D. Liepmann, “Performance of MEMS based micro capillary pumped loop for chip-level temperature control”, MEMS 2001 : The 14th IEEE International Conference on Micro Electro Mechanical Systems, Switzerland, 2001.
5 http://www.cs.wright.edu/people/faculty/sthomas/
6 L.J. Meyer and L.M. Phinney, “Optimization Study of a Silicon-Carbide Micro-Capillary Pumped Loop”, International Electronic Packaging Technical Conference and Exhibition,Hawaii,USA,2003.
7 陳品志, “毛細式泵吸環路之實驗研究” , 國立清華大學工程與系統科學系博士論文, 中華民國九十年七月。
8 J. T. Dickey and G. P. Peterson, “Experimental and Analytical Investigation of a Capillary Pumped Loop,” J. Thermophysics and Heat Transfer, Vol. 8, No. 3, pp. 602-607, 1994.
9 A. Faghri, Heat Pipe Science and Technology, Taylor and Francis, New York, 1995.
10 A.Bejan, John Wiely, “Convective Heat Transfer”, New York, Chap. 10, 1984.
11 R.D Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Company, New York, 1984.
12 林郁欣, “整合微鉑溫度感測器於熱泡致動器之發展研究” , 國立成功大學航空太空工程學系碩士論文,中華民國九十三年七月。
13 Marten Stjernstrom and Johan Roeraade, “Method for fabrication of microfluidic systems in glass”, J. Micromech. Microeng,1998