| 研究生: |
洪晢元 Hong, Che-Yuan |
|---|---|
| 論文名稱: |
應用於內視鏡醫療系統之冷凍治療術研究 Development of Cryotherapy in the Endoscopic System for Medical Application |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 冷凍治療 、二氧化碳雪花 、形成腔體 、內視鏡系統 |
| 外文關鍵詞: | Cryotherapy, CO2 snow, Formation Chamber, Endoscopic System |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在內視鏡醫療系統中,二氧化碳雪花產生裝置之設計及其特性,並探討二氧化碳雪花噴霧對生物體組織之冷凍效應。研究工作包括內視鏡系統中二氧化碳雪花形成腔體之設計,不同液體壓力下之二氧化碳雪花流場量測,及生物體組織之溫度量測等。生物體冷凍治療法是以極低溫的方式進行組織的熱侵襲治療(thermal injury),通常使用二氧化碳雪花或液態氮等溫度極低的物質當工作介質。二氧化碳雪花粒徑由Malvern粒子分析儀量測,流場特性以粒子影像測速儀(PIV)量測,並作流場觀察及診斷。噴霧流場溫度分佈乃使用熱電偶進行量測,而生物體組織溫度則由紅外線熱影像儀量測,以利分析冷凍噴霧對生物體組織的熱傳影響以及分析其影響區域。結果顯示液態二氧化碳在不同的壓力下,其流量介於0.8~2.6 g/s之間,顯示二氧化碳噴流之流量主要與噴注壓力相關。實驗結果亦顯示,當噴注壓力由40bar增加至60bar時,雪花平均飛行速度由4.0 m/s 加速至12.8 m/s;當腔體管長由20mm增長至 40mm時,雪花平均飛行速度也由7.6 m/s加速至12.0 m/s,而腔體之通氣孔徑則對雪花飛行有減速作用,當通氣孔徑由3.0mm擴大至 6.0mm時,雪花平均飛行速度由8.2 m/s減速至5.0 m/s。當形成腔體長度由25mm增加至40mm時,位於出口軸向0.5cm處雪花平均粒徑由446μm增大至621μm,主要原因是當管長增加時,小顆雪花粒子更容易於腔體內相互碰撞並團聚成大顆粒雪花飛出。實驗結果更顯示當噴注壓力超過55bar時,冷凍噴霧較容易打穿組織上表皮而將低溫傳至組織下方,為避免傷害病灶以外組織,可選擇較適宜之噴注壓力於治療時使用。而當腔體管長增加時,由於雪花生成量以及噴灑錐角擴大,因此對於組織之冷凍區域也愈大,以此結果可選擇不同外型之外接腔體於各種病理條件下應用。
This paper investigates the CO2 snow generation device in the endoscopic system for medical application, and to explore the CO2 snow spray freezing effect in the vitro test .The research including the design of formation chamber under different pressure flow measurement, and temperature measurement of the vitro test. Cryotherapy is a thermal injury to the tissue, commonly used CO2 snow or liquid N2. CO2 snow particle size measurement by the Malvern particle size analyzer, flow field characteristic is measured by particle image velocimetry (PIV). Spray flow field temperature distribution measurement is determined using the thermocouple, and the tissue temperature by measuring infrared thermal imaging device to facilitate the analysis of frozen spray on the organism's thermal impact of the tissue and do analysis of impact area. The results showed that liquid CO2 at different pressures, the flow rate is between 0.8 ~ 2.6 g/s, that shows the flow rate of CO2 jet mainly associated with the injection pressure. The results also show that when the injection pressure increased from 40 to 60 bar, the snow average velocity accelerate from 4.0 m/s to 12.8 m/s; when the length of formation chamber from 20 mm up to 40 mm, the mean velocity from 7.6 m/s to accelerate to 12.0 m/s, while the cavity of the formation chamber is a reduction of snow flying effect, when the cavity extend from the 3.0mm to 6.0mm, the mean velocity of the CO2 snow decrease from 8.2 m/s to 5.0 m/s. When the length of formation chamber increases from 25 mm to 40 mm, the mean particle size of CO2 snow increase by the 446μm to 621μm, the main reason is that when the length increases, the small snow particles more likely to collide with each other in the chamber and snow particles flying out into big reunion. According to these results we can choose different formation chamber to use in a variety of pathological conditions.
參考文獻
[1] 醫療器材工業年鑑(2008),工業技術研究院產業經濟與趨勢研究中心,2007.
[2] Makuuchi, H., “Endoscopic mucoscal resection for early esophageal cancer: indication and techniques,”Dig Endosc, Vol.8, pp.175-179,1996.
[3] Nakajima, T., “Gastric cancer treatment guidelines in Japan,” Gastric Cancer, Vol.5, pp.1-5, 2002.
[4] Kudo S., Makuuchi, H., Nakajima, T., et al., “Endoscopic diagnosis and treatment of early colorectal cancer,” World J Surg, Vol.21, pp.694-701, 1997.
[5] Ono, H., Kondo, H., “Endoscopic mucosal resection for treatment of early gastic cancer,” Gut, Vol.48, pp.225-229, 2001.
[6] Onik, G. M., Chambers, N., Chernus, S. A., Zemel, R., Atkinson, D. and
Weaver, M. L., “Hepatic Cryosurgery with and without the Bair
Hugger,” Journal of Surgical Oncology, vol. 52, pp. 185-187,1993.
[7] Cohen, J. K., Rooker, G. M., Miller, R. J. and Merlotti, L.,
“Cryosurgical Ablation of the Prostate: Treatment alternative for
Localized Prostate Cancer,” Cancer Treatment & Research, vol. 88, pp.
167-186, 1996.
[8] Boonstra, H., Koudstaal, J., Oosterhuis, J. W., Wymenga, H. A., Adlders,J. G. and Janssens, J., “Analysis of Cryolesions in the Uterine Cervix:Application Techniques, Extension, and Failures,” Obstetrics &
Gynecology, vol. 75, pp. 232-239,1990.
[9] Zerik, T. G., Rutherford, T. J., Palter, S. F., Troiano, R. N., Williams, E.,
Brown, J. M. and Olive, D. L., “Cryomyolysis a new procedure for the
conservative treatment of uterine fibroids,” J. Am. Assoc. Gynecol.
Laparosc., vol. 5, pp. 33-38, 1998.
[10] Pasricha, P.J., Hill, S., Wadwa , K.S., et al., “Endoscopic cryospray : experimental results and first clinical use,” Gastrointest Endosc , Vol.49, pp.627-631, 1999.
[11] Kantsevoy, S.V., Cruz-Correa, M.R., “Endoscopic cryotherapy for the treatment of bleeding mucosal vascular lesions of the GI tract,” Gastrointest Endosc, Vol.57, pp.403-406, 2003.
[12] Johnston, M.H., Schoenfeld, P., “Endoscopic cryotherapy : a new technique for mucosal ablation in the esophagus ,” Gastrointest Endosc, Vol.50, pp.86-92, 1999.
[13] Smith, D.J., Fahssi, W.M., Swanlund, D.J. and Bischof, J.C., “A
parametric study of freezing injury in AT-1 rat prostate tumor cells,”
Cryobiology, vol. 39, pp 13–28, 1999.
[14] Mazur, P., “Freezing of living cells: Mechanisms and implications,”
Am. J. Physiol., vol.143, pp.125–142, 1984.
[15] Toner, M., “Nucleation of ice crystals inside biological cells, Advances in Low-Temperature,” Biology. London, JAI Press, pp.1–52., 1993.
[16] McGrath, J. J., Cravalho, E.G and Huggins, C.E., “An experimental
comparison of intracellular ice formation and freeze thaw survival of
HeLa S-3 cells,” Cryobiology, vol. 12, pp. 540–550,1975.
[17] Jacob, G., Kurzer, M. N., and Fuller, B. J., “An assessment of tumor
cell viability after in vitro freezing,” Cryobiology, vol. 22, pp. 417–426,1985.
[18] Sarah Cho, MBBS, Simon Zanati, MBBS, Elaine Yong, MD, “Endoscopic cryotherapy for the management of gastric antral
vascular ectasia” Gastrointest Endosc, 68:895-902, 2008.
[19] 張育仁, “Formation and Characterization of CO2-Snow Jet,” 中國機械工程學會第二十五屆全國學術研討會, 2008.
[20] 陳軍佑, “Influence of Secondary Atomization on CO2 Snow Jet Flow Field,” 中華民國航空太空學會/中華民用航空學會聯合學術研討會, 2009.
[21] Lourenco, L. M., Krothapalli, A., and Smith, C. A, “Particle Image Velocimetry,” Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200 , 1989.
[22] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M. L, “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields,” AIAA Jornal, 24, pp. 1715-1717, 1986.
[23] Lourenco, L. M., and Krothapalli A, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows,” AIAA, 2180-2194, 2004.
[24] Raffel, M., Willert, C. E., Kompenhans, J “Particle Image Velocimetry–A Practical Guide,” Springer, ISBN 3-540-63683-8, 1998.
[25] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’’hler, C “Recent Applications of Particle Image Velocimetry in Aerodynamic Research”, Flow Meas. Instrum., 7(3/4). pp. 247-256, 1996.
[26] Newbery, A. P., Rayment, T., and Grant, P. S, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming,” Materials Science and Engineering A, 383, pp. 137-145, 2004.
[27] Adrian, R. J, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, 39, pp. 159-169, 2005.
[28] Menon, M., and Lai, W. T., “Key Considerations in the Selection of Seed Particles for LDV measurements,” Laser Anemometry Advances and Applications, ASME, pp. 719-730, 1991.
[29] Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T., “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements,” Part. Part. Syst. Charact., 11, pp. 127-132, 1994.
[30] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T., “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics,” Meas. Sci. Technol., 3, pp. 619-621, 1992.
[31] Lee, K. H., Lee, C. H., and Lee, C. S, “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method,” Fuel, 83, pp. 971-980, 2004.
[32] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig, S., “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization,” ILASS-Europe 2001, Zurich, 2-6 September, 2001.
[33] A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
[34] A. H. Lefebvre, “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[35] R. A., Jr. Castleman, “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[36] N. Dombrowski and W. R. Johns, “The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[37] B. E. Stapper, W. A. Sowa and G. S. Samuelsen, ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[38] R. P. Fraser, ”Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
[39] G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott,” A note on the growth of Kelvin-Helmholtz waves on thin liquid sheets,” J. Fluid Mech., vol. 57, part 4, pp. 671-672, 1973.
[40] H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.7901/2-0, 1979.
[41] F. R. Zhang, S. Wakabayashi and N. Tokuoka, “The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers),” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
[42] A.A. Rizkalla ana A.H. Lefebvre,"Influence of Liquid Properties on Airblast Atomizer Spray Characteristices,” ,J.Eng.Power,pp. 173-179,April 1975.
[43] A.A Rizkalla and A.H. Lefebvre, ”The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng.,vol. 97, pp. 316-320, 1975
[44] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp. 1139-1142, 1983.
[45] Beck, J., Lefebvre, A. H., and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
[46] J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams, ”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[47] J. E. Beck and A.H. Lefebvre, "Airblast Atomization at Conditions of Low Air Volcity,"J.Propulsion, vol. 7, NO. 2, March-April 1991.
[48] M. Aligner and S. Wittig," Swirl and Counterswirl Efferts in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power,vol. 102, pp.706-710, 1980.
[49] Dorman , R. G. “The Atomization of Liquid in a Flat Spray , ”British J. Appl. Phys. , Vol. 3 , pp. 189-192 , 1952.
[50] Fraser, R. P. Eisenklam , P. Dombrowski , N. and Hasson , D.“Drop Formation from Rapidly Moving Sheets , ”A. I. Ch.E. J., Vol. 8, No. 5, pp. 672-680, 1962.
[51] Dombrowski, N. and John, W. R. “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci ., Vol. 18 , pp. 203-214 ,1963.
[52] Sattelmayer, T. and Witting, S., “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 465-472, 1986.
[53] N.K. Rizk and A.H. Lefebvre, "Spray Characteristics of Plain-ject Airblast Atomizer , " Transtion of The Asme vol. 106 , July 1984.
[54] C.Press,A.K.Gupta ,and H.G. Semerjian,"Aerodynamic Effects on Fuel Spray Characteristics:Air-assist Atomizer , " HTD-vol. 104 , pp. 111-119 , 1988.
[55] Lin, T. C, “Production of Metal Powder by Atomization Processes with Internal Impinging Mechanism,” Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C, 2006.
[56] Muh-Rong Wang, Tien-Chu Lin, Teng-San Lai, Ing-Ren Tseng, “Atomization Performance of an Atomizer with Internal Impingement,” JSME International Journal, Series II, Vol. 48, No. 4, pp.858-864, 2005.
[57] Whitlow, J. D., and Lefebvre, A. H, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Sprays, 3, pp. 137-156, 1993.
[58] Nguyen, D. A., and Rhodes, M. J, “Producing Fine Drops of Water by Twin-Fluid Atomisation,” Powder Technology, 99, pp. 285-292, 1998.
[59] Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke,” Experimental Thermal and Fluid Science, 26, pp. 715-722, 2002.
[60] http://www.chemicalogic.com/download/phase_diagram.html
[61] 陳軍佑, “二氧化碳雪花噴嘴設計對雪花形成機制之影響” 國立成功大學航空太空工程研究所/碩士論文, 2009.