簡易檢索 / 詳目顯示

研究生: 徐偉翔
Hsu, Wei-Hsiang
論文名稱: 硒化銅銦鎵奈米粉體與燒結體之合成及特性研究
Synthesis and Characteristic of Cu(In,Ga)Se2 Nanocrystals and Sintering Compacts
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 銅銦鎵硒奈米晶粒直接升溫法膠體成型熱壓燒結
外文關鍵詞: Nanocrystallites, Heating-up, CIGS, Sintering, Centrifugal forming method, Hot-pressed sintering
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以熱分解法製備CIGS奈米粉體,首先於此製程下瞭解熱注入法(Hot-injection method)與直接升溫法(Heating-up process)對CIGS粉體生成之合成機制。結果顯示利用直接升溫法可獲得單一黃銅礦結構與均勻化學組成之奈米粉體,且其粒徑尺寸分佈約為15.0 nm±3nm,其相生成過程為CuSe→CuInSe2 →CIGS。而熱注入法由於銦錯合離子之反應性較鎵錯合離子來得高,使得合成過程中產生相分離之現象,因而產生富銦與富鎵之銅銦鎵硒奈米粉末。然而,以此製程條件下雖可獲得近單分散粉體,但其產率極低,故藉由直接升溫法合成粉體過程中改變溶劑種類與Se/陽離子前驅比例,當隨非配位型溶劑(ODE)添加量增加,其CIGS外型會由片狀晶逐漸轉變為球狀粉體,若Se/陽離子前驅比例增加,生成CIGS粉體之粒徑尺寸均一且細小,其粒徑分佈約9-20nm,適當改變溶劑種類與溶質比例,可有效調節金屬單體之活性,並控制其粒徑尺寸分佈。
    以此奈米CIGS奈米粉末為原料,分別以膠體成型及熱壓成型技術製備具有較高生胚密度及較佳顯微結構之胚體。由於經高溫長時間之熱壓燒結時易造成CIGS組成中In、Ga及硒之揮發,使得組成偏離原始計量比。因此本研究將CIGS奈米晶粒以低溫短時間(≦550oC, 10分鐘)熱壓,先行打破奈米粉末之凝聚體,促進胚體之緻密化,使胚體達到中期燒結之階段,再經硒保護氣氛下於低溫燒結(≦550oC),以避免組成及Se之揮發,可獲得高緻密性且為單一黃銅礦相CIGS燒結體。透過離心力成型法能使生胚產生均質堆積,凝聚體間的孔洞就會因此減少,可使坯體之燒結活性大幅增加,於450℃燒結2小時下可使晶粒成長,550℃燒結3小時即可獲得高緻密性燒結體。

    Nearly mono-dispersed CuIn0.7Ga0.3Se2(CIGS) nanocrystals were successfully synthesized using the thermal decomposition of copper, indium, gallium, and selenium-oleylamine complexes via a heating-up process in this study. The CIGS nanocrystals exhibited single chalcopyrite phase and its chemical composition was closely to stoichiometric. It was observed that the morphology of CIGS nanocrystallites changed from flake shape into spherical shape as the ODE addition increased. As the selenium/ cation ratio increased, the CIGS nanocrystals of size 9-20nm were obtained. The reactivity of the monomers in the solution can be adjusted by changing the solvent kind and selenium/cation ratio, and hence affect the crystallite size and size distribution. Sintered CuIn0.7Ga0.3Se2 ceramics with a relative density above 92% and grain size of about 3-4 μm can be obtained by centrifugal forming nearly mono-dispersed CuIn0.7Ga0.3Se2 nano-crystals. The packing density and microstructure of the CIGS green body were improved significantly using the centrifugal forming method because it prevented inter-agglomerate pore formation. Besides, hot-pressed sintering effectively breaks up the agglomerates and promotes the nano-particle rearrangement. CIGS relative density is promoted to 91% by sequentially sintering at 550oC for 1-3 h under Se2 atmosphere. The prepared CIGS ceramics exhibited p-type semiconductor characteristics and the carrier concentration decreased, but the Hall mobility increased with increasing soaking time at 550oC.

    摘要 I Extended Abstract II 誌謝 VI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 研究方法 2 第二章 理論基礎 5 2-1 銅銦鎵硒(CIGS)薄膜太陽能電池基本構造 5 2-2 銅銦鎵硒(Copper indium gallium diselenide) 7 2-2-1 銅銦鎵硒之簡介 7 2-2-2 銅銦鎵硒吸收層及其非真空製程 13 2-3 晶粒生成與成長機制 13 2-3-1 Ostwald ripening 15 2-3-2 Oriented attachment與Mesocrystals 16 2-4 銅銦鎵硒(CIGS)粉體之製備 19 2-4-1 固態反應法(Solid-state reaction) 19 2-4-2 醇熱合成法(Solvothermal) 19 2-4-3 熱分解法(Thermal decomposition method) 20 2-5 粉末燒結性 23 2-6燒結機制 25 2-7 銅銦鎵硒(CIGS)之電特性 29 第三章 實驗步驟與分析方法 31 3-1 藥品 31 3-2 銅銦鎵硒奈米粉體合成之實驗步驟 31 3-2-1 製備銅銦鎵之金屬錯合物(Metal complexes) 31 3-2-2 以快速熱注入法製備銅銦鎵硒奈米粉體 32 3-2-3 以直接升溫法製備銅銦鎵硒奈米粉體 33 3-3 銅銦鎵硒燒結之實驗步驟 34 3-3-1 真空氣氛燒結 35 3-3-1-1奈米粉體預處理 35 3-3-1-2 單軸加壓與冷均壓預成型 35 3-3-1-3 膠體預成型 35 3-3-1-4 真空氣氛燒結 35 3-3-2 熱壓燒結 35 3-4 實驗分析方法 37 3-4-1 粉末結晶相鑑定與粒徑分析 37 3-4-2 粉末與燒結體之成份/組成分析 37 3-4-3 傅利葉轉換紅外光分析光譜 37 3-4-4 燒結體密度量測 37 3-4-5 霍爾效應分析 38 3-4-6 微結構分析 38 第四章 以熱注入法及直接升溫法製備Cu(In0.7Ga0.3)Se2奈米粉體之生成機制研究 39 4-1 合成錯合物之光譜分析 39 4-2 以熱注入法合成Cu(In0.7Ga0.3)Se2粉體之結果 40 4-3 以直接升溫法合成Cu(In0.7Ga0.3)Se2粉體生成之結果 42 4-4 以熱注入法及直接升溫法製備Cu(In0.7Ga0.3)Se2粉體之機制探討 44 第五章 Cu(In0.7Ga0.3)Se2奈米粉體生成之外型與粒徑控制 49 5-1 摻雜非配位型溶劑對Cu(In0.7Ga0.3)Se2奈米粉體生成之影響 49 5-2 前驅比例(Se/陽離子)對Cu(In0.7Ga0.3)Se2奈米粉體生成之影響 50 5-3 溶劑與前驅比例對Cu(In0.7Ga0.3)Se2奈米粉體生成機制之影響 54 第六章 銅銦鎵硒粉體之燒結緻密化行為 63 6-1 CIGS粉末與生胚效應 63 6-1-1 CIGS粉末尺寸及粒徑分布之燒結性 63 6-1-2 CIGS粉末堆積及生胚密度之影響 63 6-2 以膠體成型法製備Cu(In0.7Ga0.3)Se2燒結體 64 第七章 以熱壓燒結法製備CuIn0.7Ga0.3Se2銅銦鎵硒燒結體之緻密化行為及其電性影響 70 7-1 不同成型製程對CIGS燒結體之影響 70 7-2 熱壓成型法對CIGS燒結體燒結緻密化之影響 72 7-3 CIGS熱壓燒結體之真空硒化燒結緻密化及特性之影響 73 第八章 結論 80 參考文獻 82

    1.Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,” Progress in Photovoltaics: Research and Applications 7 (1999) 311–316.
    2.C. N. Bucherl, K. R. Olesson and H. W. Hillhouse, “Thin film solar cells from sintered nanocrystals,” Curr. Opi. In Chem. Eng. 2 (2013) 168-177.
    3.Y. Hashimoto, Takuya Satoh, Shinichi Shimakawa, and T. Negami, “High efficiency CIGS solar cell on flexible stainless steel,” 3rd World Conference on Photovoltaic Enero Convemion, Japan (2003) 574-577.
    4.S. J. Fonash, “Solar Cell Device Physics,” Academic Press Inc., New York (1981)
    5.Nakada T, Mizutani M. “18% Efficiency Cd-Free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Japanese Journal of Applied Physics: Part 2 Letters 41 (2002) L165–L167.
    6.Ennaoui A, Siebentritt S, Lux-Steiner M Ch, Riedl W, Karg F, ”High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers,” Solar Energy Materials and Solar Cells 67 (2001) 31–40.
    7.H. J. Möller, “Semiconductors for Solar Cells,” Artech House Inc., Boston (1993)
    8.S. Chen, X. G. Gong, “Physical Review B” 75 (2007) 205-209.
    9.Y. Hamakawa, “Thin Film Solar Cells,” 28-31 (2004)163-209.
    10.R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27 (1997) 625-653.
    11.W.N. Shafarman, R. Klenk, and B.E. McCandless, “Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap,” J. Appl. Phys. 79 (1996) 7324-7328.
    12.G.C. Park, H.D. Chung, C.D. Kim, H.R. Park, W.J. Jeong, J.U. Kim, H.B. Gu, K.S. Lee, “Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation,”Sol. Energy Mater. Sol. Cells 49 (1997) 365-374.
    13.T. Yukawa, K. Kuwabara, K. Koumoto, “Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film,” Thin Solid Films 286 (1996) 151-153.
    14.Schmid, M. Ruckh, F. Grunwald, and H.W. Schock, “Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2,” J. Appl. Phys. 73 (1993) 2902.
    15.Zhang, S.B., Wei, S.H., Zunger, A. and Katayama-Yoshida, H., “Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev B,Vol. 57 (1998) 9642.
    16.Turcu, M., Ktschau, I.M. and Rau, U., “Composition dependence of defect energies and band alignments in the Cu(Inl-xGax)(Sel-ySy)2 alloy system,” J. Appl. Phys., Vol. 91 (2002) 1391.
    17.Heath, J.T., Cohen, J.D., Shafarman, W.N., Liao, D.X. and Rockett, A.A., “Effect of Ga content on defect states in CuInl-xGaxSe2 photovoltaic devices,” Appl. Phys. Lett., Vol. 80 (2002) 4540.
    18.Tom M. and Luis C., Mater, “Manufacture and Operation,” (2005) 305-311.
    19.D. Guimard, N. Bodereau, J. Kurdi, J.F. Guillemoles, D. Lincot, P.P. Grand, M. Ben Farrah, S. Taunier, O. Kerrec, and P. Mogensen, “Efficient Cu(In,Ga)Se2 based solar cells prepared by electrodeposition,” MRS 2003 Spring Meeting Symposium Proceedings, San Francisco, USA, B6.9.
    20.B.J. Brown, and C.W. Bates, “Similarities in the chemical mechanisms of CuInSe2 and CdS thin film formation by chiemical spray pyrolysis,” Thin Solid Films 188 (1990) 301-305.
    21.M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy 77 (2004) 749-756.
    22.V.K. Kapur, A. Bansal, P. Le, I. Omar, “CIS and CIGS layers from selenized nanoparticle precursors,” Thin Solid Films 431 (2003) 53-56.
    23.T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes,” Phys. Stat. Sol. 203 (2006) 2593-2597.
    24.C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target,” Thin Solid Film 332 (1998) 340-344.
    25.T. Sugimoto, “Preparation of monodispersed colloidal particles,” Adv. Colloid Interface Sci. 28 (1987) 65-108.
    26.V. K. LaMer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc. 72 (1950) 4847-4848.
    27.X. Peng, J. Wickham, A. P. Alivisatos, “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120 (1998) 5343-5344.
    28.C. B. Murray, C. R. Kagan, M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblites,” Annu. Rev. Mater. Sci. 30 (2000) 545-610.
    29.Z. A. Peng, X. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc. 124(13) (2002) 3343-53.
    30.J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew. “Synthesis of monodisperse spherical nanocrystals.,” Chem. Int. Ed. 46 (2007) 4630-4660.
    31.游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,中華民國97年6月。
    32.P. W. Voorhees, “The theory of ostwald ripening.,” J. Statistical Phys., Vol. 38 (1985) Nos. 1/2.
    33.I.M. Lifshitz, V.V. Slyozov, "The kinetics of precipitation from supersaturated solid solutions". J. Phys. and Chem. Solids, 19(1-2) (1961) 35–50.
    34.D. Fairhurst, and R. W. Lee, “Aggregation, agglomeration-how to avoid aggravation when formulating particulate suspensions.,” Drug Delivery Tech., Vol. 8, No. 8 (2008).
    35.R. Lee Penn and Jillian F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2,” Am. Mineralog., 83 (1998) 1077-1082.
    36.R. L. Penn, J. F. Banfiled, Geochim. Cosmochim, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Acta 63 (1999) 1549-1557.
    37.Y.-W. Jun, J.-S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.,” Angew. Chem. Int. Ed. Enql. 45(21) (2006) 3414-3439.
    38. H. Cölfen, S. Mann, “Highteer-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew.Chem. Int. Ed. Engl. 42(21) (2003) 2350-2365.
    39.T. Vossmeyer,G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “A “double-diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters,” Science 267 (1995) 1476-1479.
    40.W. P. Hsu, L. REnnquist, E. Matijevic, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV),” Langmuir 4 (1988) 31-37.
    41.S. Wohlrab, N. Pinna, M. Antonietti, H. CElfen, “Polymer-induced alignment of DL-alanime nanocrystals to crystalline mesostructures,” Chem. Eur. J. 11 (2005) 2903-2913.
    42.H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angew. Chem. Int. Ed. 44 (2005) 5576-5591.
    43.N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2,” Jpn. J. Appl. Phys. 28 (1989) 1780-83.
    44.T. Wada and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2,” J. Phys. Chem. Solids 66 (2005) 1987-89.
    45.T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, "Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes," Phys. Stat. Sol.(a) 203 (2006) 2593-97.
    46. S. Ahn, C. W. Kim, J. H. Yun, J. C. Lee, K. H. Yoon, "Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles," Solar Energy Mater. & Solar Cells 91 (2007) 1836-1841.
    47.Y. Xie, Y. T. Qian, W. Z. Wang, S. Y. Zhang, R. H. Zhang, Science, “A benzene-thermal synthetic route to nanocrystalline GaN,” 1996, 272, 1926.
    48.Y. Xie, P. Yan, J. Lu, W. Z. Wang, Y. T. Qian, “A safe low temperature route to InAs nanofibers,” Chem. Mater., 1999, 11, 2619.
    49.J. Xiao, Y. Xie, Y. Xiong, R. Tang, Y. Qian, “A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1-x)2 nanocrystallites,” J. Mater. Chem. 11 (2001) 1417-20.
    50.Y. H. Yang, Y. T. Chen, “Solvothermal preparation and spectroscopic characterization of copper indium diselenide nanorods,” J. Phys. Chem. B 110 (2006) 17370-17374.
    51.K. H. Kim, Y. G. Chun, B. O. Park, K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 nanoparticles by solvothermal route,” Mater. Sci. Forum 449-452 (2004) 273-276.
    52.Y.G. Chun, K.H. Kim, K.H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films 480-481 (2005) 46-49.
    53.J. Olejníček, C.A. Kamler, A. Mirasano, A.L. Martinez-Skinner, M.A. Ingersoll, C.L. Exstrom, S.A. Darveau, J.L. Huguenin-Love, M. Diaz, N.J. Ianno, R.J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1−xGaxSe2 materials involving an open-air solvothermal reaction,” Solar Energy Mater. & Solar cells 94 (2010) 8-11.
    54.Y. A. Yang, H. M. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. 117(41) (2005) 6870-6873.
    55.C.B. Murray, D.J. Norris, and M.G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am Chem. Soc. 115 (1993) 8706-15.
    56.Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B, 2005, 109(35), 16671-16675.
    57.M. T. Ng, C. B. Bootroyd, J. J. Vittal, J. Am. Chem. Soc. 128(22) (2006) 7118-7119.
    58.H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, Y. Li, “A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent,” Nanotechnology 18 (2007) 025602/1-025602/6.
    59.J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(In,Ga)Se2 nanoparticles,” Chem. Mater. 20 (2008) 6906-6910.
    60.Y.-H. A. Wang, C. Pan, N. Bao, A. Gupta, “Synthesis of ternary and quaternary CuInxGa1−xSe2 (0≤x≤1) semiconductor nanocrystals,” Solid State Sci.11 (2009) 1961-1964.
    61.Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett. 8 (2008) 2982-87.
    62.M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F.Barbara, B.A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130 (2008) 16770-777.
    63.S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, “Kinetics of monodisperse iron oxide nanocrystal formation by heating-up process.,” J. Amer. Chem. Soc. 129 (2007) 12571-12584.
    64.S. G. Kwon, and T. Hyeon, “Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.,” Accounts of Chemical Research Vol. 41, No. 12 (2008) 1696-1709.
    65.C. d. M. Donegá, P. Liljeroth, and D. Vanmaekelbergh, “Physicochemical evalution of the hot-injection method, a synthesis route for monodisperse nanocrystals.,“ 1, No. 12 (2005) 1152-1162.
    66.M. N. Rahaman, “Ceramic Processing and Sintering,” New York (1995).
    67.高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,化學工業出版社。
    68.W.H. Rhodes, “Agglomeration and particle size effects on mixing yttria stabilized zirconia,” J. Am. Ceram. Soc. 64 (1981) 19-22.
    69.M.J. Mayo, “Processing of nanocrystalline ceramics from ultrafine particles,” Inter. Mater. Rev. 41 (1996) 95.
    70.J. Markmann, A. Tschope, R. Barringer, “Low temperature processing of dense nanocrystalline yttrium-doped cerium oxide ceramics,” Acta. Mater. 50 (2002) 1433-40.
    71.J. D. Park,” Growth and electrical characterization of CuInSe2 prepared by the sintering method,“ J. Korean Phys. Soc. 25 (1992) 536-540.
    72.S.J. Ahn, K.H. Kim, K.H. Yoon, Colloids & Surfaces A 313-314 (2008) 171-174.
    73.I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. Metzger, and M. A. Contreras, “Required materials properties for high-efficiency CIGS modules,” NREL/CP-520-46235 (2009).
    74.T. Meyer, F. Engelhardt, J. Parisi, and U. Rau, “Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 91 (2002) 5093.
    75.H. Wang, Y. Zhang, X. L. Kou, Y. A. Cai, W. Liu, T. Yu, J. B. Pang, C. J. Li, and Y. Sun, “Effect of substrate temperature on the structural and electrical properties of CIGS based on the one-stage co-evaporation process,” Semicond. Sci. Technol. 25 (2010) 055007.
    76.D.-H. Kuo, and C.-W. Jhang, “Preparation and characterization of CIGSe solar cells by ink printing on alumina substrates with self-synthesized selenide powders via an environment-friendly and cost-effective dry synthesis route,” Int. J. Appl. Ceram. Technol., 1-6 (2012).
    77.W. Bu, Z. Chen, F. Chen, and J. Shi, “Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals,” J. Phys. Chem. C 113 (2009) 12176-12185.
    78.M. Salavati-Niasari, Z. Fereshteh, F. Davar, “Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor,” Polyhedron 28 (2009) 126–130.
    79. L. Polavarapu, Q.-H. Xu, “A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties, “Nanotechnology 20 (2009) 185606.
    80.T. Kuzuya, K. Itoh, M. Ichidate, T. Wakamatsu, Y. Fukunaka, K. Sumiyama, “Facile synthesis of nearly monodispersed copper sulfide nanocrystals,” Electrochimica Acta, 53 (2007) 213-217.
    81. T. Kuzuya, K. Itoh, K. Sumiyama, “Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complex,” J. Colloid & Interface Sci. 319 (2008) 565-571.
    82.J. Xu, C.-S. Lee, Y.-B. Tang, X. Chen, Z.-H. Chen, W.-J. Zhang, S.-T. Lee, W. Zhang, and Z. Yang, “Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles,” J. Am. Chem. Soc. Vol. 4 No. 4 (2010) 1845-1850.
    83.Peter Atkins, Julio de Paula, “Physical Chemistry,” Freeman, New York (1998) 141-164.
    84.K. Aso, A. Hayashi, and M. Tatsumisago, “Synthesis of needlelike and platelike SnS active materials in high-boiling solvents and their application to all-solid-state lithium secondary batteries,” Cryst. Growth Des. 11 (2011) 3900-3904.
    85.J. Park, B. Koo, K. Y. Yoon, Y. Hwang, M. Kang, J.-G. Park, T. Hyeon, “Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump,” J. Am. Chem. Soc. 127 (2005) 8433.
    86.T. Duan, W. Lou, X. Wang, Q. Xue, “Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method,” Colloids Surf. A 310 (2007) 86-93.
    87. K. Nose, Y. Soma, T. Omata, and S.O.-Y.-M., “Synthesis of ternary CuInS2 nanocrystals; phase determination by complex ligand species,” Chem. Mater., 21(13) (2009) 2607-2613.
    88. C. R. Bullen, and P. Mulvaney, “Nucleation and growth kinetics of CdSe nanocrystals in octadecene,” Nano Lett., Vol. 4, No. 12 (2004).
    89.M. Kruszynska, H. Borchert, J. Parisi, J. Kolny-Olesiak, “Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals,” J. Nanopart. Res. 13 (2011) 5815-5824.
    90. J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(In, Ga)Se2 nanoparticles,” Chem. Mater. 20 (2008) 6906-6910.
    91.Z. Li, O¨ z. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, and A. Mews, “Controlled synthesis of CdSe nanowires by solution–liquid–solid method.,” Adv. Funct. Mater. 19 (2009) 3650–3661.
    92. A. Zevalkink, E.S. Toberer, T. Bleith, E.Flage-Larsen, G.J. Snyder, “Improved carrier concentration control in Zn-doped Ca5Al2Sb6,” J. Appl. Phys. 110 (2011) 013721.
    93.I. Sanyal, K.K. Chattopadhyay, S. Chaudhuri, A.K. Pal, “Grain boundary scattering in CuInSe2 films,” J. Appl. Phys. 70 (1991) 841-845.
    94.Tauc J., Grigovici R. and Vancu A., “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi(b), 15 (1996) 627.
    95.A. Rawat, H. K. Mahavar, S. Chauhan, A. Tanwar and P. J. Singh, “Optical band gap of polyvinylpyrrolidone/polyacrylamide blend thin films,” Indian J. Pure & appl. Phys. Vol. 50 (2012) 100-104.
    96.Y.M. Strzhemechny, P.E. Smith, S.T. Bradley, D.X. Liao, A.A. Rockett, K. Ramanathan, L.J. Brillson, “Near-surface electronic defects and morphology of CuIn1-xGaxSe2,” J. Vac. Sci. Tech. B 20 (2002) 2441-48.

    下載圖示 校內:2019-08-04公開
    校外:2019-08-04公開
    QR CODE