| 研究生: |
張皓為 Chang, Hao-Wei |
|---|---|
| 論文名稱: |
以微藻 Scenedesmus obliquus CNW-N 固定二氧化碳並進行重金屬鎘之生物吸附 Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 微藻 、生物吸附 、鎘 、Scenedesmus obliquus 、Chlorella vulgaris 、填充床 |
| 外文關鍵詞: | Microalgae, biosorption, cadmium, Scenedesmus obliquus, Chlorella vulgaris, fixed-bed |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究則擬以所產生的藻體以生物吸附的方式去除水體中有害之重金屬,取自南台灣水域所篩選分離之Scenedesmus obliquus CNW-N和 Chlorella vulgaris ESP-31為目標藻株,進行光自營培養。結果顯示,Scenedesmus obliquus CNW-N藻株之最高二氧化碳移除總量接近15 g,其生長量為319.3 g/l/d,而Chlorella vulgaris ESP-31 之二氧化碳移除量達9.5 g,而其平均每天生長量為214.2 g/l/d。接著,我們將藻體添加至含鎘、鎳、鋅等重金屬之水體中,進行不同重金屬吸附之可行性評估。結果顯示S. obliquus CNW-N在重金屬濃度50 mg/L下,對鎘(Cd) 、鎳(Ni)與鋅(Zn)吸附量分別為42.9、28.5與40.3 mg/ g,而Chlorella vulgaris ESP-31在相同情況下對對鎘(Cd) 、鎳(Ni)與鋅(Zn)吸附量分別為17.1、16.3與13.4 mg/ g。上述結果顯示S. obliquus CNW-N與C. vulgaris ESP-31除了對二氧化碳具有優異的移除效能外,且對水體中的重金屬鎘具有很好的吸附能力。
在重金屬鎘(Cd)生物吸附策略中,本研究探討接觸時間、pH、溫度、重金屬濃度與藻體添加量對生物吸附效率之影響,並在在最適化溫度與pH情況下,探討恆溫飽和吸附曲線與動力學機制。實驗結果顯示,S. obliquus CNW-N在pH 6與25oC與C. vulgaris ESP-31在pH 6與30oC有最佳吸附效果。且當藻重為0.8 g/L情況下進行吸附,在5分鐘內達到平衡,吸附過程符合Langmuir恆溫吸附曲線,可得到最大吸附量分別為68.6 mg/g和23.4mg/g。此結果指出S obliquus CNW-N有較佳的吸附效果。
因此,本研究選用S. obliquus CNW-N 為目標藻株進行固定化細胞連續式管柱進行鎘去除之生物吸附程序。此方法可提高藻體濃度,並方便微藻藻體利用及回收,且可利用供給營養源使藻體持續生長,使其附著在載體(luffa sponge)上之藻量增加,進而達到較佳的生物吸附效果。本研究分別探討流速(25、50、75 ml/min)、營養源置換次數(0次、1次、2次)、載體直徑(1cm、1.5cm、2cm3)對生物膜生長之影響。在最適化條件下(流速25 ml/min、營養源量置換1次、載體大小1cm3),藻體濃度可達原本的3.5倍(約17.5 g/L)。再將固定化細胞在填充床反應器進行重金屬(Cd)吸附,並對重金屬(Cd)吸附量、吸附效率與貫穿曲線進行評估。結果發現在流速5 ml/min、鎘進料濃度濃度7.5 mg/L時,有最大吸附量為38.4 mg之總吸附量,穿透時間為15.5 h。此策略不但可同時兼具環保以及去除環境有害污染物等多重優勢,更具有未來開發與應用之潛力
In this study, microalgal cells were utilized for heavy metals removal via biosorption process, Efficient CO2-fixing microalgae Scenedesmus obliquus CNW-N and Chlorella vulgaris ESP-31 isolated from southern Taiwan were used as the biosorbents to remove cadmium from aqueous solution. The microalgae were grown by continuous feeding of atmospheric air enriched with 2.5% CO2, achieving a CO2 removal of around 15 g and a biomass production of 319.3 g/l/d for S. obliquus CNW-N for 8 days, and CO2 removal of 9.5g and a biomass production of 241.2 g/l/d for C. vulgaris ESP-31. The adsorption of Cd, Zn and Ni by Chlorella vulgaris ESP-31 and Scenedesmus obliquus CNW-N were investigated at various pH values. It was found that the adsorption capacities of Cd, Zn and Ni were 42.9, 40.3 and 28.5 mg/g, respectively for S. obliquus CNW-N and 17.1, 13.4 and 16.3 mg/g, respectively for C. vulgaris ESP-31. These results indicated that the two species had better ability to adsorb Cd, which became the target heavy metal ion for the later stage of this study.
The adsorption of Cd by the two microalgae species was further investigated with variations in contact time, temperature, pH, adsorbent concentrations and initial metal concentration. The effect of biosorbent dosage on biosorption performance was also investigated. Kinetic and isotherm adsorption experiments were carried out at the optimal pH and temperature. The biosorption of Cd by S. obliquus CNW-N was optimal at pH 6.0 and 30oC, while the C. vulgaris ESP-31 exhibited best biosorption efficiency at pH 6.0 and 25oC. A biosorbent dosage of 0.2 g was required for good Cd removal for both species. The biosorption reached equilibrium adsorption within 5 min of contact time and the adsorption equilibrium obeyed Langmuir isotherm with an estimated maximum biosorption capacity (Qmax) of 68.6 mg/g for Scenedesmus sp. and 23.4 mg/g for Chlorella sp..
As S obliquus CNW-N exhibits better adsorption ability for Cd, further experiments were carried out to establish a continuous fixed bed adsorption process for Cd removal by S obliquus CNW-N cells immobilized on loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgae biomass. The growth of microalgae on the support with proper nutrient supply could also enhance the overall metal removal activity. Operating parameters like feedstock flow rate, medium replacement, particle diameter of the sponge were varied and studied. The best cell growth on the sponge support was obtained with medium flow rate at 25 ml/min; using one-time medium replacement and adopting sponge particle diameter of 1 cm. The best performance on fixed-bed biosorption (38.4 mg, breakthrough time = 15.5 h) was achieved at a flow rate of 5 ml/min with the influent Cd concentration of 7.5 mg/L.
References
Ahalya, N., Kanamadi, R.D., Ramachandra, T.V. 2006. Biosorption of iron(III) from aqueous solutions using the husk of Cicer arientinum. Indian Journal of Chemical Technology, 13(2), 122-127
Aksu, Z. 2001. Equilibrium and kinetic modelling of cadmium(II) biosorption by C-vulgaris in a batch system: effect of temperature. Sep Purif Technol, 21(3), 285-294.
Aksu, Z., Kutsal, T. 1990. A Comparative-Study for Biosorption Characteristics of Heavy-Metal Ions with C-Vulgaris. Environ Technol, 11(10), 979-987.
Alimohamadi, M., G. Abolhamd, A. Keshtkar.2005. Pb(II) and Cu(II) biosorption on rhizopus arrhizus modeling mono-and multi-component systems, Miner. Eng. 18,1325-1330.
Amarasinghe, B.M.W.P.K., and R.A. Williams.2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater,Chem.Eng.J. 132,299-309.
Andrade, A.D., Rollemberg, M.C.E., Nobrega, J.A. 2005. Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem, 40(5), 1931-1936.
An, H.K., B.Y. Park, D.S. Kim.2001. Crab shell for the removal of heavy metals from aqueous solution, Water Res. 35,3551-3556.
Bae, W., W. Chen, A. Mulchandani, R.K. Mehra.2000. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins, Biotechnol. Bioeng. 70,518-524.
Bae, W., A. Mulchandani, W. Chen.2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation, J. Inorg. Biochem.88,223-227.
Basha, S., Z.V.P. Murthy, B. Jha.2008. Isotherm modeling for biosorption of Cu(II) and Ni(II) from wastewater onto brown seaweed, Cystoseira indica,AIChE J. 54,3291-3302.
Bishnoi, N.R., Kumar, R., Kumar, S., Rani, S. 2007. Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. J Hazard Mater, 145(1-2), 142-147.
Boudene, C.1979. Food contamination by metals, in Trace Metals:exposure and health effects,Di ferrante, E.,Ed.,Pergamon Press,Oxford.
Brierley, C.L., J.A. Brierley, M.S. Davidson. 1989. Applied microbial processes for metals recovery and removal from wastewaters, in “metal ions and bacteria”, Beveridege,T.J. and Doyle, R.J., (eds.) John Wiley & Sons, N.Y.,359-382.
Bunluesin, S., M. Kruatrachue, P. Pokethitiyook, S. Upatham, G.R. Lanza.2007. Batch and continuous packed colum studies of cadmium biosorption by Hydrilla verticillata biomass, J. Biosci. Bioeng. 103,509-513.
Chang, J.S., and C.C. Chen.1998. Quantitative analysis and equilibrium models of selective adsorption in muiti-metal systems using a bacterial biosorbent, Sep. Sci. Technol. 33,611-632.
Chang, J.S., J.C. Huang, C.C. Chang, T.J. Tarm.1998. Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass, Water Sci. Tech. 38,171-178.
Chen, C.Y., Yeh, K.L., Su, H.M., Lo, Y.C., Chen, W.M., Chang, J.S. 2010. Strategies for enhanced biomass production of a newly isolated oil-rich microalga Chlorella sp. Biotechnol. Prog., 26(3), 679-686.
Cho, D.Y., S.T. Lee, S.W. Park, A.S. Chung.1994. Studies on the biosorption of heavy metals onto Chlorella vulgaris, J. Environ Sci. Health Part A. A29,389-409.
Choi, S.B., Y.S. Yun.2006. Biosorption of cadmium by carious types of dried sludge:an equilibrium study and investigation of mechanisms, J. Hazard. Mater. 138,378-383.
Chojnacka, K., Chojnacki, A., Gorecka, H. 2004. Trace element removal by Spirulina sp from copper smelter and refinery effluents. Hydrometallurgy, 73(1-2), 147-153.
Chu, K.H., M.A. Hashim.2007. Copper biosorption on immobilized seaweed biomass:column breakthrough characteristics,J. Environ. Sci. 19,928-932.
Chu, K.H., Hashim, M.A., Phang, S.M., Samuel, V.B. 1997. Biosorption of cadmium by algal biomass: Adsorption and desorption characteristics. Water Sci. Technol., 35(7), 115-122.
Crist, R.H., Oberholser, K., Shank, N., Nguyen, M. 1981. Nature of Bonding between Metallic-Ions and Algal Cell-Walls. Environ Sci Technol, 15(10), 1212-1217.
Decker EA, Welch B. 1990. Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. Journal of Agricultural and Food Chemistry 38:674-677.
Deng, L.P., Su, Y.Y., Hua, S., Wang, X.T., Zhu, X.B. 2007. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater, 143(1-2), 220-225.
Deng, X., and D.B. Wilson.2001. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli, Appl. Microbiol. Biotechnol. 56,276-279.
Diniz, V., M.E. Weber, B. Volesky, G. Naja.2008. Colum biosorption of lanthanum and europium by Sargassum, Water Res. 42,363-371.
Donmez, G.C., Aksu, Z., Ozturk, A., Kutsal, T. 1999. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem, 34(9), 885-892.
Esteves, A.J.P., Valdman, E., Leite, S.G.F. 2000. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol. Lett., 22(6), 499-502.
Fiol, N., I. Villaescusa, M. Martinez, N. Miralles, J. Poch, J. Serarol.2006. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol. 50,132-140.
Gadd, G.M..1988. Accumulation of metals by microorganisms and algae, in “Biotechnology Vol6b”, Rehm, H.J., and Reed, G., (eds.) VCH Publishers, N.Y., 401-433.
Garg, V.K., R. Gupta, R. Kumar, R.K. Gupta.2004. Adsorption of chromium from aqueous solution on treated sawdust, Bioresour. Technol. 92,79-81.
Göksungur, Y., S. Uren, U. Guvenc.2005. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass, Bioresour. Technol. 96,103-109.
Gulnaz, O., Saygideger, S., Kusvuran, E. 2005. Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study. J Hazard Mater, 120(1-3), 193-200.
Gupta, R., P. Ahuja, S. Khan, R.K. Szxena, H. Mohapatra.2000. Microbial biosorbents:meeting challenges of heavy metal pollution in aqueous solutions, Curr. Sci. 78,967-973.
Gupta, V.K., Rastogi, A. 2008. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J Hazard Mater, 152(1), 407-414.
Han, R., J. Zhang, W. Zou, W. Zou, H. Xiao, J. Shi, H. Liu.2006. Biosorption of copper(II)and lead(II) from aqueous solution by chaff in a fixed-bed column, J. Hazard. Mater. 133,262-268.
Ho, S.-H., Chen, C.-Y., Lee, D.-J., Chang, J.-S. 2011. Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnol. Adv., 29(2), 189-198..
Ho, S.H., Chen, C.Y., Yeh, K.L., Chen, W.M., Chang, J.S. 2010a. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochem. Eng. J., 53(1), 57-62.
Ho, S.H., Chen, W.M., Chang, J.S. 2010b. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol., 101(22), 8725-8730.
Holan, Z.R., Volesky, B. 1994. Biosorption of Lead and Nickel by Biomass of Marine-Algae. Biotechnol. Bioeng., 43(11), 1001-1009.
Iqbal, M.,A. Saeed, S.I. Zafar.2007. Hybrid biosorbent:an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution, J. Hazard. Mater. 148,47-55.
Ishibashi, Y.C. Cervantes, S. Silver.1990. Chromium reduction in Pseudomonas putida,Appl.Environ. Microbiol. 56,2268-2270.
Iyer, A., K. Mody, B. Jha.2005. Biosorption of heavy metals by a marine bacterium, Mar. Pollut. Bull. 50,340-343.
Jarvis, P.J.1983. Heavy metal pollution:an annotated bibliography,Geo books,Norwich,U.K..
Jeon, C., I.W. Nah, K.Y. Hwang.2007. Adsorption of heavy metals using magnetically modified alginic acid,Hydrometallurgy. 86,140-146.
Kaduková, J., and E. Vircíková.2005. Comparison of differences between copper bioaccumulation and biosorption, Environ. Int. 31,227-232.
Kaikake, K., K. Hoaki, H. Sunada, R.P. Dhakal, Y. Baba.2007. Removal characteristics of metal ions using degreased coffee beans:adsorption equilibrium of cadmium(II), Bioresour. Technol. 98,2787-2791.
Kao, W.C., Y.P. Chiu, C.C. Chang, J.S. Chang.2006. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli, Biotechnol. Prog. 22,1256-1264.
Kiran, B., A. Kaushik.2008. Cyanobacterial biosorption of Cr(VI):application of two parameter and Bohart Adams models for batch and column studies, Chem. Eng. J. 144,391-399.
Khoshmanesh, A., Lawson, F., Prince, I.G. 1996. Cadmium uptake by unicellular green microalgae. Chemical Engineering Journal and the Biochemical Engineering Journal, 62(1), 81-88.
Kratochvil, D., and B. Volesky.1998. Advances in the biosorption of heavy metals, Trends Biotechnol. 16,291-300.
Kumar, U., M. Bandyopadhyay.2006. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk,J. Hazard. Mater.129,253-259.
Kumar, Y.P., King, P., Prasad, V.S.R.K. 2006. Removal of copper from aqueous solution using Ulva fasciata sp - A marine green algae. J Hazard Mater, 137(1), 367-373.
Lee, J.Y., Kwon, T.S., Baek, K., Yang, J.W. 2009. Adsorption characteristics of metal ions by CO2-fixing Chlorella sp HA-1. Journal of Industrial and Engineering Chemistry, 15(3), 354-358.
Lee, S.Y., J.H. Choi, Z.H. Xu.2003. Microbial cell-surface display, Trends Biotechnol. 21,45-52.
Lester,J.N.1987. Heavy metals in wastewater and sludge treatment process,Boca Raton,Fla.,CRC Press.
Malkoc, E., Y. Nuhoglu, M. Dundar.2006. Adsorption of chromium(VI) on pomace-an olive oil industry waste:Batch and column studies, J. Hazard. Mater. 138,142-151.
Matheickal, J.T., Yu, Q.M. 1999. Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour. Technol., 69(3), 223-229.
Matheickal, J.T., Yu, Q.M., Woodburn, G.M. 1999. Biosorption of cadmium(II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Res., 33(2), 335-342.
Matthews, P.J.1984. Control of metal application rates from sewage sludge utilization in agriculture, Crit. Rev. Environ. Control, 14,199-250.
Mohan, S., and G. Sreelakshmi.2008. Fixed bed column study for heavy metal removal using phosphate treated rice husk,J. Hazard. Mater. 153,75-82.
Nieboer, E., and D.H.S. Richardson.1980. The replacement of the nondescript term “heavy metal” by a biologically and chemically significant classification of metal ions,Environ. Pollut. Ser. B. 1,3-26.
Nordberg, M.1998. Metallothioneins:historical review and the state of knowledge,Talanta. 46,243-254.
Ozer, A., Ozer, D., Ekiz, H.I. 2004. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorption, 10(4), 317-326.
Ozturk, S., Aslim, B., Turker, A.R. 2009. Removal of Cadmium Ions from Aqueous Samples by Synechocystis sp. Separ Sci Technol, 44(6), 1467-1483.
Pamukoglu, M.Y., and F. Kargi.2006. Batch kinetics and isotherms for biosorption for copper(II) ions onto pre-treated powdered waste sludge (PWS), J. Hazard. Mater. 138,479-484.
Pandey, P.K., Y. Verma, S. Choubey,M. Pandey, K. Chandrasekhar.2008. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents, Bioresour. Technol. 99,4420-4427.
Park, J.K., and H.N. Chang.2000. Microencapsulation of microbial cells, Biotechnol. Adv. 18,303-319.
Pazirandeh, M., B.M. Wells, R.L. Ryan.1998.Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif, Appl. Environ. Microbiol. 64,4068-4072.
Pazirandeh, M., L.A. Chrisey, J.M., Mauro, J.R., Campbell, B.P., Gaber.1995. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake, Appl. Microbiol. Biotechnol. 43, 1112-1117.
Pinzon, M.L., Meseguer, V., Ortuno, J.F., Aguilar, M.I., Llorens, M., Saez, J., Soler, A. 2004. Cadmium(II) uptakeftom aqueous effluents by biosorption with non living leaves of Posidonia Oceanica. Afinidad, 61(509), 74-80.
Sandau, E., Sandau, P., Pulz, O., Zimmermann, M. 1996. Heavy metal sorption by marine algae and algal by-products. Acta Biotechnol, 16(2-3), 103-119.
Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P.V.R., Velan, M. 2007. Application of seaweeds for the removal of lead from aqueous solution. Biochem. Eng. J., 33(3), 211-216.
Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interf Sci, 275(1), 131-141.
Shumate, S.E., and G.W. Strandberg.1985. Accumulation of metals by microbial cells, in “Comprehensive Biotechnology”, Moo-Young, M. (ed.) Pergamon Press, N.Y., 235-247.
Silver, S., T.K. Misra, R.A. Laddaga.1989. Bacterial resistance to toxic heavy metals, in “Metal ions and bacteria”, Beveridge,T.J. and Doyle, R.J.,(eds.)John Wiley&Sons,N.Y.,121-139.
Sousa, C., P. Kotrba, T. Ruml, A. Cebolla, V. de Lorenzo.1998. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB, J. Bacteriol. 180,2280-2284.
Srinath, T., T. Verma, P.W. Ramteke, S.K. Garg.2002. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria, Chemosphere. 48,427-435.
Summer,A.O., and S. Silver.1978. Microbial transformations of metals,Ann.Rev.Microbiol.32,637-672.
Terry, P.A., Stone, W. 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47(3), 249-255.
Tsezos, M.2001. Biosorption of metals. The experience accumulated and the outlook for technology development, Hydrometallurgy. 59,241-243.
Tuzen, M., Sari, A. 2010. Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chem Eng J, 158(2), 200-206.
Valls, M., G.D. Roser, S. Atrian, V. de Lorenzo.1998. Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs,Biochimie. 80,855-861.
Valls, M., V. de Lorenzo, G.D. Roser, S. Atrian.2002. Engineering outer-membrance proteins in Pseudomonas putida for enhanced heavy-metal biosorption, J. Inorg. Biochem. 79,219-223.
Vaughan, T., C.W. Seo, W.E. Marshall.2001. Removal of selected metal ions from aqueous solution using modified corncob, Bioresour. Technol. 78,133-139.
Veglio,F., Beolchini, F.1997. Removal of metals by biosorption: a review, Hydrometallrugy. 44,301-316.
Volesky, B..2001. Detoxification of metal-bearing effluents:biosorption for the next century, Hydrometallurgy. 59,203-216.
Volesky, B., Mayphillips, H.A. 1995. Biosorption of Heavy-Metals by Saccharomyces-Cerevisiae. Appl Microbiol Biot, 42(5), 797-806.
Vijayaraghavan, K., I. Jegan, K. Palanivelu, M. Velan.2005. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulate in a packed column, Chemosphere. 60,419-426.
Vijayaraghavan, K., and Y.S. Yun.2008. Bacterial biosorbents and biosorption, Biotechnol. Adv. 26,266-291.
Wang, J., and C. Chen.2009. Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27,195-226.
Wilde, E.W., Benemann, J.R. 1993. Bioremoval of Heavy-Metals by the Use of Microalgae. Biotechnol. Adv., 11(4), 781-812.
Williams, J.W., and S. Silver,.1984. Bacterial resistance and detoxification of heavy metals,Enzyme Microb. Technol. 6,530-537.
Wood, J.M., and H.K. Wang.1983. Microbial resistance to heavy metals, Environ Sci. Techno.17,582A-590A.
Yu, Q.M., Matheickal, J.T., Yin, P.H., Kaewsarn, P. 1999. Heavy metal uptake capacities of common marine macro algal biomass. Water Res., 33(6), 1534-1537.
Zhou, D., L. Zhang, J. Zhou, S. Guo.2004. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Res. 38.2643-2650.
Zhou, D., L. Zhang, J. Zhou, S. Guo.2004. Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions, J. Appl. Polym. Sci. 94,684-691.
校內:2021-08-31公開