簡易檢索 / 詳目顯示

研究生: 陳俊維
Chen, Jiun-wei
論文名稱: 壁面具變折射係數塗層的平行板圍場之多模式熱傳
Multi-mode heat transfer in a parallel-plate enclosure with graded-index coatings on its walls
指導教授: 吳志陽
Wu, Chih-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 平行板圍場輻射傳導塗層多模式熱傳變折射係數
外文關鍵詞: conduction, radiation, coatings, graded-index, enclosure, parallel-plate, Multi-mode heat transfer
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的主要在探討壁面具可變折射係數塗層的一維平行板圍場的多模式熱傳遞現象。平板為半透明塗層與不透明基底結合而成,其中半透明塗層有輻射與傳導熱傳,而不透明基底僅具熱傳導,塗層在圍場內的邊界為Fresnel反射邊界,且具對流熱傳,塗層與基底間的邊界為散漫(diffuse)反射邊界,基底在圍場外的邊界具表面輻射與對流熱傳。經由離散方向法解輻射傳遞方程式與有限差分法解能量方程式求得平板的溫度分佈與熱通量。文中折射係數變化的斜率愈大的塗層,其溫度分佈比折射係數為平均值的塗層的溫度分佈有愈大的差異。折射係數的平均值愈大,其溫度變化有較和緩的現象。在塗層靠近塗層與圍場內空氣之間的邊界處,折射係數1.5至2的塗層的溫度曲線比塗層的折射係數為2的溫度曲線有較和緩的溫度變化。光學厚度愈大,塗層的溫度分佈曲線的斜率愈大,塗層兩端溫度的變化也較小。傳導輻射比愈小,不同折射係數變化的塗層的溫度分佈差異愈明顯。在折射係數變化的情況下,
    散射比愈大,塗層溫度曲線較平緩的區域會減少,塗層兩端溫度變化的區域比較大且
    變化較和緩。

    The purpose of this work is to investigate the heat exchange in a parallel-plate enclosure with graded-index coatings on its walls. The multi-mode heat transfer of the enclosure walls including opaque substrates and semi-transparent coating is considered. There are thermal radiation and heat conduction in the coatings, and conduction only in the substrate. The internal surfaces of the coatings are Fresnel and convective, and the interface between coating and substrate is diffuse. There are radiation and convection at the external surface of the enclosure. Temperature distribution and heat flux are calculated from radiative transfer equation and energy equation by using discrete ordinates method and finite difference method. The variation of temperature over the depth of the coating decreases as the average of refractive index is increased. Around the internal surface, the temperature distributions of the coatings with refractive index from 1.5 to 2 are more gradual than those of the coatings with refractive index of 2. The optical thickness is larger, the temperature distribution in the coatings is steeper, and more gradual temperature variation near the surfaces of coatings can be found. When the conduction-radiation parameters is smaller, the difference of temperature distributions for various refractive indices is larger. For various refractive index distributions, when the albedo increases, the gradual-variation region of temperature distribution in the coatings shrinks, and more
    gradual temperature variation appears around the surfaces of the coatings.

    中文摘要.................................................i 英文摘要................................................ii 誌謝....................................................iv 目錄.....................................................v 表目錄.................................................vii 圖目錄................................................viii 符號說明................................................xv 第一章 緒論............................................1 1-1 研究動機、背景與文獻回顧.........................1 1-2 研究目的與方法簡介...............................3 1-3 本文架構.........................................4 第二章 理論分析........................................5 2-1 物理模式.........................................5 2-2 數學方程式.......................................6 第三章 數值方法.......................................15 3-1 輻射熱傳遞方程式................................15 3-2 能量方程式......................................18 第四章 結果與討論.....................................22 4-1 網格大小之影響與結果比較........................22 4-2 參數對圍場溫度分佈的影響........................23 第五章 結論...........................................36 參考文獻................................................37

    1. R. Siegel, “Radiative exchange in a parallel-plate
    enclosure with translucent protective coatings on its
    walls,” International Journal of Heat and Mass
    Transfer, 42, pp. 73-84, 1999.
    2. L. K. Matthews, R. Viskanta, F. P. Incropera,“Combined
    Conduction and Radiation Heat Transfer in Porous
    Materials Heated by Intense Solar Radiation,” Journal
    of Solar Energy Engineering, 107, pp. 29-34, 1985.
    3. R. Siegel, “Internal Radiation Effects in Zirconia
    Thermal Barrier Coatings,” Journal of Thermophysics
    and Heat Transfer, 10, pp. 707-709, 1996.
    4. R. Siegel, “Temperature Distributions in Channel Walls
    with Translucent Thermal Barrier Coatings,” Journal of
    Thermophysics and Heat Transfer, 12, pp. 289-296, 1998.
    5. R. Siegel, C.M. Spückler, “Effect of index of
    refraction on radiation characteristics in a heated
    absorbing, emitting, and scattering layer,” Journal of
    Heat Transfer(Transactions of the ASME), 114, pp. 781-
    784, 1992.
    6. R. Siegel, C.M. Spückler, “Variable refractive index
    effects on radiation in semitransparent scattering
    multilayered regions,” Journal of Thermophysics and
    Heat Transfer, 7, pp. 624-630, 1993.
    7. D. Lemonnier, V. Le Dez, “Discrete ordinates solution
    of radiative transfer across a slab with variable
    refractive index,” Journal of Quantitative
    Spectroscopy and Radiative Transfer, 73, pp. 195-204,
    2002.
    8. P. B. Abdallah, V. Le Dez, ”Radiative flux field
    inside an absorbing-emitting semi-transparent slab with
    variable spatial refractive index at radiative
    conductive coupling,” Journal of Quantitative
    Spectroscopy and Radiative Transfer, 67, pp. 125-137,
    2000.
    9. Y. Huang, X. L. Xia, H. P. Tan, “Comparison of Two
    Methods for solving Radiative Heat Transfer in a
    gradient index Semitransparent Slab,” Numerical Heat
    transfer, part B, 44, pp. 83-99, 2003.
    10. M. N. Özisik, Radiative Transfer and Interaction with
    Conduction and Convection, John Wiley and Sons, New
    York, 1973.
    11. M. F. Modest, Radiative Heat Transfer, 2nd ed.,
    Academic press, New York, 2003.
    12. J. C. Tannehill, D. A. Anderson, R. H. Pletcher,
    Computational Fluid Mechanics and Heat Transfer, 2nd
    ed., Taylor and Francis, Washington, 1997.

    下載圖示 校內:2009-08-29公開
    校外:2009-08-29公開
    QR CODE