| 研究生: |
吳翰宇 Wu, Han-Yu |
|---|---|
| 論文名稱: |
壓力感測塗料於可壓縮流場之應用 Application of Pressure Sensitive Paint in a Compressible Flow |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
鍾光民
Chung, Kung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 可壓縮流 、壓力感測塗料 、溫度感測塗料 |
| 外文關鍵詞: | Compressible Flow, Pressure Sensitive Paint, Temperature Sensitive Paint |
| 相關次數: | 點閱:87 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓力感測塗料(Pressure-sensitive Paint, PSP) 是一種方便、非侵入式且低成本的壓力量測技術,主要利用光致發光及氧淬滅效應量測表面壓力,有別於傳統侵入式感測器,壓力感測塗料具連續性且定量量測全域性表面壓力之能力,逐漸在風洞實驗上應用此技術。與傳統動態壓力感測器不同的是,壓力感測塗料會受到溫度變化影響使亮度改變降低測量的準確度,故須獲得表面溫度以修正數據。
本研究使用聚合物含量70%的釕錯合物PSP作為實驗塗料,並以平板、凸角流、NACA 0012及ONERA M6作為驗證PSP準確度之模型,實驗馬赫數為0.64~0.92。且利用溫度感測塗料(Temperature-sensitive Paint, TSP)量測表面溫度,並利用溫度修正in-situ(原位校正)校驗法將模型上壓力感測器量到的原始數據進行修正,獲得最終的壓力數據,並與Kulite動態壓力感測器量測之壓力數據進行比較。另外,本研究將此種塗料利用成功大學航太實驗場的震波風洞進行動態量測實驗驗證該塗料的反應時間。
Pressure sensitive paint (PSP) is used for measuring static pressure of flat plate, convex corner, NACA 0012, and ONERA M6 models with transonic test conditions (M = 0.64~0.92) in this study. The PSP we used is composed by Ru(dpp) and silica gel which polymer content is 70% and its response time is approximately 177.5 ± 33.4 μs. Because of local temperature difference, this study will apply temperature sensitive paint (TSP) to measure the global temperature distribution and then correct the error which caused by local temperature difference on PSP. In addition to this, in-situ calibration method is used in this study after temperature correction. The results are compared with the data comes from reference literature and Kulite sensors, an instrument to measure the pressure. It shows the root-mean-square error between PSP and reference data is almost ± 5% ~ 8% at Mach number is 0.64 and 0.7. The root-mean-square error is ± 8% ~ 10% at Mach number is 0.83 and 0.92.
[1]. Peterson, J. I., & Fitzgerald, R. V. (1980). New technique of surface flow
visualization based on oxygen quenching of fluorescence. Review of Scientific Instruments, 51(5), 670-671.
[2]. Kavandi J., Callis J. B., Gouterman M. P., Khalil G., Wright D., Green E., Burns D.,
& McLachlan B. (1990). Luminescent barometry in wind tunnels. Rev. Sci. Instrum. 61(11), 3340-3347.
[3]. Bukov A., Fonov S., Mosharov V., Orlov A., Pesetsky V., Radchenko V. (1997).
Study result for the application of two-component PSP technology to aerodynamic experiment. AGARD Conference Proceedings CP-601, Advanced Aerodynamic Measurement Technology, Seattle
[4]. Liu, T., Campbell, B. T., Burns, S. P., & Sullivan, J. P. (1997). Temperature-and
pressure-sensitive luminescent paints in aerodynamics. Applied Mechanics Reviews, 50(4), 227-246.
[5]. Campbell B. (1993). Temperature sensitive fluorescent paints for aerodynamics
applications. MS Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN
[6]. Campbell B., Liu T., Sullivan J. P. (1992). Temperature measurement using
fluorescent molecules. Sixth Int. Symp. Appl. Laser Techniques Fluid Mech, Lisbon, Portugal
[7]. Campbell B., Liu T., Sullivan J. P. (1994). Temperature sensitive fluorescent paint
systems. AIAA 25th Plasmadynamics and Lasers Conference, Colorado Springs. AIAA Paper 94-2483
[8]. Campbell B., Crafton J., Witte G., Sullivan J. P. (1998). Laser spot
heating/temperature-sensitive paint heat transfer measurements, 20th AIAA Advanced Measurement and Ground Testing Technology Conference, Albuquerque, NM, U.S.A. AIAA Paper 98-2501
[9]. Nakakita K., Kurita M., Mitsuo, K., & Watanabe S. (2006). Practical pressure-
sensitive paint measurement system for industrial wind tunnels at JAXA. Measurement Science and Technology, 17(2), 359–366.
[10]. Nakakita K., Kurita M., & Mitsuo, K. (2004). Development of the pressure-sensitive
paint measurement for large wind tunnels at japan aerospace exploration agency. 24th International Congress of the Aeronautical Science, Yokohama, Japan
[11]. Mitsuo, K., Asai, K., Hayasaka, M., & Kameda, M. (2003). Temperature correction
of PSP measurement using dual-luminophor coating. Journal of Visualization, 6(3), 213-223.
[12]. Gregory, J. W., Asai K., Kameda M., Liu T., & Sullivan J. P. (2008). A review of
pressure-sensitive paint for high-speed and unsteady aerodynamics, Proceedings of the Institution of Mechanical Engineers. Journal of Aerospace Engineering, 222(2), 249-290.
[13]. Hangai T., Kameda M., Nakakita K., & Asai K. (2002). Time response
characteristics of pyrene-based pressure-sensitive coatings on anodic porous alumina. Proceedings of the 10th International Symposium on Flow Visualization, Kyoto, Japan.
[14]. Sakaue H. (2003), Anodized aluminum pressure sensitive paint for unsteady
aerodynamic applications, Purdue University, West Lafayette, IN
[15]. Baron A. E., Danielson J. D. S., Gouterman M., Wan J. R., Callis J. B., &
McLachlan B. (1993). Submillisecond response time of oxygen-quenched luminescent coating. Rev. Sec. Instrum, 64(12), 3394-3402.
[16]. Ali M. Y., Pandey A., & Gregory J. W. (2016). Dynamic mode decomposition of fast
pressure sensitive paint data. Sensors, 16(6), 862.
[17]. Sakaue H., Kakisako T., & Ishikawa H. (2011). Characterization and Optimization
of Polymer-Ceramic Pressure-Sensitive Paint by Controlling Polymer Content. Sensors, 11(7), 6967-6977.
[18]. Hayashi, Y., & Sakaue, H. (2017). Dynamic and Steady Characteristics of Polymer-
Ceramic Pressure-Sensitive Paint with Variation in Layer Thickness. Sensors, 17(5), 1125.
[19]. Heine, J., & Müller-Buschbaum, K. (2013). Engineering metal-based luminescence
in coordination polymers and metal-organic frameworks. Chemical Society reviews, 42(24), 9232-9242.
[20]. Vītola, V. (2019). Electronic excitations and processes in long lasting luminescence
material SrAl2O4, University of Latvia, Riga.
[21]. Liu, T., & Sullivan, J. P. (2005). Pressure and temperature sensitive paints.
Heidelberg: Springer-Verlag GmbH.
[22]. Yu J. B., Xiang X. J., Xiong H. L., Huang Z, & Zhao X. J. (2018). Measurements
and applications of fast response pressure sensitive paint. Journal of Experiments in Fluid Mechanics, 32(3), 17-32.
[23]. Carroll B. E., Abbitt J.D., Likas E. W. & Moris M. J. (1996). Step response of
pressure sensitive paints, AIAA Journal, 34(3), 521-526.
[24]. Sakaue H., & Sullivan J. P. (2001). Time response of anodize aluminum pressure
sensitive paint, AIAA Journal, 39(10), 1944-1949.
[25]. Liu T., Teduka N., Kameda M., & Asai K. (2001). Diffusion timescale of porous
pressure sensitive paint, AIAA Journal, 39(12), 2400-2402.
[26]. Nelson M. A. (2018). Uncertainty quantification in steady state PSP using monte
carlo simulations at AEDC. 2018 Aerodynamic Measurement Technology and Ground Testing Conference, Atlanta, Georgia.
[27]. ISSI, Temperature Sensitive Paints. Retrieved July 10, 2019, from
https://innssi.com/temperature-sensitive-paints/
[28]. 黃奕瑄(2018). 機翼模型螢光壓力溫度感測塗料測壓與流場視流優化試驗量測
技術開發,中科院委託研究計劃成果報告(計畫編號XW07027P079-CS)。
[29]. Chung, K. M. (2000). Transition of subsonic and transonic expansion-corner flows.
Journal of Aircraft, 37(6), 1079-1082.
[30]. Kuzmin, A. (2014). On the lambda-shock formation on ONERA M6 wing.
International Journal of Applied Engineering Research, 9(20), 7029-7038.
[31]. 沈雅蓁(2015)。側向雙垂直噴注於超音速空氣流場之霧化混合探討。國立成功
大學航空太空工程研究所碩士論文,台南市。
[32]. Chung, K. M. (2002). Investigation on transonic convex-corner flows. Journal of
Aircraft, 39(6), 1014-1018.
[33]. Ladson, C. L., Hill, A. S., & Johnson Jr, W. G. (1987). Pressure distributions from
high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel. Technical Report (NASA Technical Memorandum 100526).
[34]. Schmitt, V., & Charpin, F. (1979). Pressure distributions on the ONERA-M6-wing at
transonic Mach numbers. AGARD Advisory Report No. 138. Experimental data base for computer program assessment.
[35]. 王健宇(2018)。利用螢光壓力感測技術之影像處理與溫度修正量測機翼於低速
風洞中之表面壓力分布。國立清華大學動力機械工程學系碩士論文,新竹市。