簡易檢索 / 詳目顯示

研究生: 穆米
Murni, Alfred
論文名稱: 含三苯胺基團氧代氮代苯并環己烷:合成,鑑定與電化學性質的研究
Benzoxazine Containing Triphenylamine Moiety: Synthesis, Characterization and Electrochemical Properties
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 氧代氮代苯并環己烷三苯胺電化學
外文關鍵詞: Benzoxazine, Triphenylamine, Electropolymerization
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功利用2-hydroxybenzaldehyde, 4-aminotriphenylamine 和paraformaldehyde合成出一新穎含三苯胺官能基之氧代氮代苯并環己烷單體(TPA-Ba),並利用1H NMR,元素分析 (EA) 和 Fourier Transform Infrared (FTIR) 光譜鑑定其結構。氧代氮代苯并環己烷為一加熱後會行開環反應的官能基,在微掃描卡計(DSC)中,在144 oC 有一吸熱峰為該單體的熔點,在240 oC 有一放熱峰為氧代氮代苯并環己烷之開環反應的溫度。我們亦加熱使TPA-Ba行開環聚合反應得到polybenzoxazine (PTPA-Ba),利用GPC測得分子量(Mw)為8347,TPA-Ba開環聚合反應係根據mechanism B,而PTPA-Ba為一phenolic type polybenzoxazine。我們使用循環伏特計(CV)探討其電化學行為,我們發現三苯胺會行dimerization並行成tetraphenylbenzidine,我們亦測量其HOMO 和 LUMO能階以探討其應用於電洞傳遞材料(hole transporting material)的潛力。

    A novel benzoxazine containing triphenylamine moiety: 3-triphenylamine-3,4-dihydro-2H-1,3-benzoxazine (TPA-Ba) have been synthesized from 2-hydroxybenzaldehyde, 4-aminotriphenylamine and paraformaldehyde. The monomer was characterized by 1H NMR, Elemental Analysis (EA) and Fourier Transform Infrared (FTIR). DSC analysis of the monomer shows two peaks, one is an endothermic peak at 144 °C which corresponds to the melting point of the monomer and an exothermal peak at 240 °C which corresponds to the ring opening process of the benzoxazine ring. The monomer underwent thermal polymerization in order to form polybenzoxazine (PTPA-Ba). The obtained polybenzoxazine have molecular weights of 8347, as measured by GPC. The polymer was characterized by FTIR and 1H NMR. The polymer shows good solubility in common organic solvent and good thermal stability. The ring opening polymerization of benzoxazine ring was investigated and found to be following mechanism B, which resulting the phenolic type polybenzoxazine. Electrochemical study was performed on PTPA-Ba. Electrochemical study of PTPA-Ba shows that electropolymerization can occur on PTPA-Ba. As a result of electropolymerization, thin film will be formed on top of ITO glass surface. The HOMO and LUMO energy levels of PTPA-Ba was measured in order to investigate the potential of PTPA-Ba as hole transporting material.

    Abstract i 摘要 ii Acknowledgement iii Contents v List of Schemes vii List of Tables viii List of Figures ix Chapter 1 1 Introduction, Literature Review and Theoretical Background 1 1.1. Benzoxazine 1 1.2. Triphenylamine 9 1.2.1 Synthesis of Triphenylamine 10 1.2.2 Application of Triphenylamine and Its Derivative 11 1.3. Electrodeposition and Electropolymerization 13 1.4. Research Motivation 14 Chapter 2 17 General Experimental 17 2.1 Instruments of Chemical Synthesis: 17 2.2 Measurement 18 2.3 Material 26 2.4 Synthesis Scheme 27 2.5 Synthesis Procedure 29 2.6 Electrochemical Polymerization 31 2.7 Benzoxazine Monomer Reaction 32 Chapter 3 34 Result and Discussion 34 3.1 Synthesis and Characterization of the Monomer 34 3.1.1 Specific Experimental 35 3.1.2 Result and Discussion 36 3.1.2.1 Synthesis of 4-aminotriphenylamine (TPA-NH2) 36 3.1.2.2 Synthesis of 3-triphenylamine-3,4-dihydro-2H-1,3-benzoxazine (TPA-Ba) 37 3.1.3 Summary 39 3.2 Polymerization of the Benzoxazine Monomer 39 3.2.1 Specific Experimental 40 3.2.2 Result and Discussion 40 3.2.2.1 Synthesis and Characterization of PTPA-Ba 40 3.2.2.2 Ring Opening Reaction Mechanism 44 3.2.3 Summary 47 3.3 Electrochemical Study of PTPA-Ba 48 3.3.1 Electropolymerization of PTPA-Ba 48 3.3.2 Electrochemical Properties of PTPA-Ba 51 Chapter 4 67 Conclusion 67 References 68 Appendix 72

    [1] Ishida, H.; Allen, D. J. J Polym Sci Part B: Polym Phys. 1996, 34, 1019.
    [2] Ishida, H.; Allen, D. J. J Appl Polym Sci. 2001, 79, 406.
    [3] Ning, X.; Ishida, H. J Polym Sci Part A: Polym Chem. 1994, 32, 1121.
    [4] Burke, W. J.; Weatherbee, C. J Am Chem Soc. 1950, 72, 4691.
    [5] Burke, W. J. J Am Chem Soc. 1949, 71, 609.
    [6] Holly, F. W.; Cope, A. C. J Am Chem Soc. 1944, 66, 1875–1879.
    [7] Burke WJ, Bishop JL, Glennie ELM, Bauer WN. J Org Chem.1965;30:3423–7.
    [8] Ishida, H. U.S. Patent 5,543,516, May 18, 1996.
    [9] Brunovska, Z.; Liu, J. P.; Ishida, H. Macromol Chem Phys. 1999, 200, 1745–1752
    [10] Aversa, M. C.; Giannetto, P.; Caristi, C.; Ferlazzo, A. J. Chem Soc Chem Commun.1982, 469–470.
    [11] Katritzky, A. R.; Xu, Y. J.; Jain, R. J Org Chem. 2002, 67, 8234–8236.
    [12] Andreu, R. and Ronda, J. C. Synth Commun. 2008, 38: 14, 2316 — 2329.
    [13] Andreu, J. A. Reina, J. C. Ronda. Journal of Polymer Science: Part A: Polymer Chemistry. 2008. Vol. 46, 3353–3366.
    [14] Riess G, Schwob M, Guth G, Roche M, Lande B. In: Culbertson BM, McGrath, editors. Advances In Polymer Synthesis. New York: Plenum; 1985.
    [15] Ishida H, Rodriguez Y. Polymer. 1995;36:3151–8.
    [16] Ishida H, Rodriguez Y. J Appl Polym Sci. 1995; 58:1751–60
    [17] Wang YX, Ishida H. Polymer. 1999;40:4563–70.
    [18] Dunkers J, Ishida H. J Polym Sci A: Polym Chem. 1999;37:1913–21.
    [19] Kasapoglu F, Cianga I, Yagci Y, Takeichi T. J Polym Sci A: Polym Chem. 2003;41:3320–8.
    [20] Russell VM, Koenig JL, Low HY, Ishida H. J Appl Polym Sci. 1998;70:1413–25.
    [21] Kirk, O., “Encyclopedia of Chemical Engineering”, 4th Ed., (A2), Wiley Int. Sci. New York, NY.1991 pp. 426–453.
    [22] Baker, T.N., W.P. Doherty, W.S. Kelley, W. Newmeyer, J.E. Rogers, R.E. Spalding , and R.I. Walter, J. Org. Chem. 1965. 30, 3714–3718.
    [23] Streitwieser, A., “Introduction to Organic Chemistry”, 4th Ed. Macmillan, New York, NY. 1992.
    [24] William, B.H., “Introduction to Organic Chemistry”, Saunders College
    Pub, Fort Worth, TX. 1997.
    [25] Gerhartz, W., “Ullmann Encyclopedia of Industrial Chemistry”, 5th ed., VCH, Deerfi eld Beach, FL. 1985 A2, pp. 37–53
    [26] Louie, J. and J.F. Hartwig, Tetrahedron Lett. 1995. 21,. 3609–3612.
    [27] Chan, H.S.O., S.C. Ng., L.S. Leong. and K.L. Tan, Synth. Met. 1995. 68. 199–205.
    [28] Stickley, K.R., T.D. Selby and S.C. Blackstock, J. Org. Chem. 1997. 62, 448–449.
    [29] Hong, Y., et.al., Tetrahedron Lett. 1998. 39, 3121–3124
    [30] Masoom, M. and A. Townshend, Analytica Chimica Acta. 1985.174, 293–297.
    [31] Brantly, T.B., L.E. Contois and C.J. Fox, , U.S. Patent. No. 3567450 1971.
    [32] Law, K-Y., Chem. Rev. 1993. 93, 449–486.
    [33] Gujadhur, R.K., C.G. Bates and D. Venkataraman, Org. Lett. 3. 2001. 4315–4317
    [34] Goodbrand, H.B., , U.S. Patent No. 5654482 ,1997.
    [35] Thelakkat, M; Macromol. Mater. Eng. 2002, 287, No. 7
    [36] Kubo, S. and T. Shintou, "Method for Producing Arylamine", U.S. Patent No. 6043370, 2000.
    [37] Urgaonkar, S.; Xu, J. H.; Verkade, J. G. J. Org. Chem. 2003, 68, 8416.
    [38] Chiu,K.Y ;Su T.X; Li J.H; Lin T.H; Liou G.S; Cheng S.H . Journal of Electroanalytical Chemistry. 2005. 575. 95-101
    [39] Gujadhur, R.; Venkataraman, D.; Kintigh, J. T. Tetrahedron Lett. 2001, 42, 4791.
    [40] Wang, KL; Tseng, TY; Tsai, HL; Wu,SC; J. of Poly Sci: Part A: Poly Chem. 2008. Vol. 46, 6861–6871.
    [41] Cheng,SH; Hsiao,SH; Su,TH; Liou,GS. Macromolecules. 2005, 38, 307-316
    [42] Agag,T; Takeichi, T. Macromolecules. 2003, 36 6010-6017.
    [43] Liu YL, Yu JM, Chou CI. J of Poly Sci: Part A: Polym Chem. 2004. Vol. 42, 5954–5963.
    [44] Garea,SA; Iovua,H ; Nicolescub, A; Deleanu, C; Polymer Testing. 2007. 26. 162–171
    [45] N.N. Ghosh, B. Kiskan, Y. Yagci, Prog. Polym. Sci. 32. 2007 1344–1391.
    [46] Wang, YX; Ishida H. Macromolecules. 2000, 33, 2839-2847.
    [47] Ferraris, J. P.; Haillon, T. R. Polymer. 1989, 30, 1319.
    [48] Xia, C.; Fan, X.; Park, M.-K.; Advincula, R. C. Langmuir 2001, 17, 7893.
    [49] Lindner, SM; Kaufmaan, N; Thelakkat, M. Organic Electronics 2007, 8, 69–75
    [50] Xiao, H; Leng, B; Tian, H; Polymer 2005, 46 5707–5713

    下載圖示 校內:2011-08-17公開
    校外:2011-08-17公開
    QR CODE