| 研究生: |
胡緯民 Hu, Wei-Min |
|---|---|
| 論文名稱: |
非線性 H2 與 H∞ 控制律設計之無人水面載具控制 Nonlinear H2 and H∞ Control Laws Design of Autonomous Unmanned Surface Vessels |
| 指導教授: |
陳永裕
Chen, Yung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 非線性控制律 、水面無人載具 、軌跡追蹤 、解析解 、H∞ 與 H2 性能指標 |
| 外文關鍵詞: | H2 and H∞ nonlinear control laws, trajectory tracking, waypoint tracking, closed-form solution, H∞ and H2 performance index |
| 相關次數: | 點閱:199 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的海洋科技中無人水面載具扮演著一個重要的角色,水面無人載具必須確保航行在險惡的海洋環境下也能擁有精準的追蹤能力。因此,本篇論文針對此目標提出一個創新的非線性控制律設計,其設計目標是針對水面無人載具的非線性運動方程式進行分析,並找出一組滿足 H2 與 H∞ 性能的控制律。在一般情形下解決非線性的追蹤問題必須先從著名的 Riccati-like 方程式探討及求解,此過程是複雜且難以實現的。然而,透過適當的狀態變數轉換,將無人載具非線性 H2 與 H∞ 的追蹤問題可描述為一非線性時變 Riccati-like 方程式,並透過上述的狀態變數轉換方法,化簡為可求解型式的 Riccati-like 方程式,求得非線性控制律的解析解,成功的完成水面無人載具的 H2 和 H∞ 控制律設計並達成追蹤任務。本篇論文所提出的方法可使水面無人載具獲得最佳的航行結果,具有克服海洋環境干擾及系統不確定性的能力,並在求解水面無人載具控制律的解析解上有重大的突破。
Control law design for marine surface vessels (MSV) is one of the crucial ocean technologies to the current ship industry. A well-controlled marine surface vessel must possess accurate trajectory or waypoint tracking capability and excellent robustness with respect to ocean disturbances such as ocean current, wave, and wind induced forces and torques, for being sure to achieve given sailing missions. For these mentioned reasons, two novel nonlinear control laws for the tracking design problems of marine surface vessels are presented in this thesis. These two approaches based on H2 and H∞ control concepts can be effectively applied to generate control commands on marine surface vessels operating in sailing regimes where the effectiveness of ocean environmental disturbances are random and unpredictable. Design objectives are to specify two control laws that analytically satisfy the H2 and H∞ performances, for the nonlinear control designs of marine surface vessels. In general, it is hard to obtain the closed-form solutions from these two nonlinear tracking problems. Fortunately, because of the adequate choice of state variable transformations, the nonlinear H2 and H∞ tracking problems of the marine surface vessels can be converted to two solvable nonlinear time-varying Riccati-like equations. Furthermore, two closed-form solutions to these two Riccati-like equations can be obtained with very simple and easy to implement structures.
[1]F. A. Papoulias, “Cross track error and proportional turning rate guidance of marine vehicles”, Journal of Ship Research, Vol. 38, No. 2 ,pp. 123–132, 1994.
[2]F. A. Papoulias and Z. O. Oral, “Hopf bifurcations and nonlinear studies of gain margins in path control of marine vehicles”, Applied Ocean Research, Vol. 17, No. 1, pp. 21–32, 1995.
[3]KSM. Davidson, and L.I. Schiff, “Turning and course keeping qualities of ships”, Transactions of the Society of Naval Architects and Marine Engineers, Vol. 54, 1946.
[4]Z. Vukic, H. Ozbolt and D. Pavlekovic, “Improving fault handling in marine vehicle course-keeping systems”, IEEE Proceedings Robotics and Automation Magazine, Vol.6, No. 2, pp. 39-52, 1999.
[5]H. Ashrafiuon, “Sliding-Mode tracking control of surface vessels”, IEEE Transactions Industrial Electronics, Vol. 55, No. 11, pp. 4004-4012, 2008.
[6]A. Behal, D. M. Dawson, W. E. Dixon and Y. Fang, “Tracking and Regulation Control of an Underactuated Surface Vessel With Nonintegrable Dynamics”, IEEE Transactions Automatic Control, Vol. 47, No. 3, pp. 495-500, 2002.
[7]R. T. McCloskey and R. M. Murray, “Exponential stabilization of drift less nonlinear control systems using homogeneous feedback”, IEEE Transactions Automatic Control, Vol. 42, No. 5, pp. 614-628, 1997.
[8]X. Bao, K. Nonami and Z. Yu, “Combined Yaw and Roll Control of an Autonomous Boat”, Proceedings of the IEEE International Conference on Robotics and Automation, pp.188-193, Kobe, May 12-17, 2009.
[9]S. Qiaomei and R. Guang, “An online adaptive logic-oriented neural approach for tracking control”, Ocean Engineering, Vol. 58, pp. 106-114, 2013.
[10]J. Ghommam, F. Mnif and N. Derbel, “Global stabilisation and tracking control of
underactuated surface vessels”, IEEE Control Theory & Applications, Vol. 4, No. 1, pp. 71-88, 2010.
[11]E. W. McGookin, D. J. Murray-Smith, Yun Li and T. I. Fossen, “Ship steering control system optimisation using genetic algorithms”, Control Engineering Practice, Vol. 8, No. 4, pp. 429-443, 2000.
[12]X. Chen and W. W. Tan, “Tracking control of surface vessels via fault-tolerant adaptive back stepping interval type-2 fuzzy control”, Ocean Engineering, Vol. 70, pp. 97-109, 2013.
[13]B. A. Francis, “A Course in Control Theory”, Lecture Notes in Control and Information Science Series, Vol. 88, Springer-Verlag, New York, pp. 101-113, 1987.
[14]T. Baser and P. Berhard, “ -optimal Control and related Minmax Problems”, Birkhauser, berlin, pp. 72-93, 1990.
[15]Y. C. Chang, “Neural network-based Ha tracking control for robotic systems”, IEEE Proceedings Control Theory and Applications, Vol. 148, No. 1, pp. 25-34, 2001.
[16]Z. Liu and C. W. Li, “Fuzzy Neural Networks Quadratic Stabilization Output Feedback Control for Biped Robots via Approach”, IEEE Transactions Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 33, No. 1, pp. 67-84, 2003.
[17]Y. C. Chang, “Adaptive Fuzzy-Based Tracking Control for Nonlinear SISO Systems via VSS and Approaches”, IEEE Transactions Fuzzy Systems, Vol. 9, No. 2, pp. 278-292, 2001.
[18]T. I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of underactuated marine craft”, Presented at the IFAC MCMC, Girona, Spain, 2003.
[19]F. Valenciaga, “A Second Order Sliding Mode Path Following Control for Autonomous Surface Vessels”, Asian Journal of Control, Vol. 17, No. 1, pp. 1-7, 2015.
[20]T. I. Fossen, “Guidance and Control of Ocean Vehicles”, John Wiley and Sons, 5-91, 1994.
[21]R. Johansson, “Quadratic Optimization of Motion Coordination and Control”, IEEE Transactions Automatic Control, Vol. 35, No. 11, pp. 1197-1208, 1990.
[22]J. Doyle, K. Zhou, K. Glover and B. Bodenheimer, “Mixed H2 and H∞ Performance Objectives Ⅱ: Optimal Control”, IEEE Transactions Automatic Control, Vol. 39, No. 8, pp. 1575-1587, 1994.
[23]T. I. Fossen, S.I. Sagatun and A.J. Sorensen, “Identification of dynamically positioned ships”, Control Engineering Practice, Vol. 4, No. 3, pp. 369-376, 1996.
[24]T. I. Fossen, “Guidance and Control of Ocean Vehicles”, John Wiley and Sons, 168-171, 1994.
[25]F. Mazenc, K. Pettersen, and H. Nijmeijer, “Global uniform asymptotic stabilization of an underactuated surface vessel”, IEEE Transactions Automatic. Control, Vol. 47, No. 10, pp. 1759–1762, 2002.
[26]G. J. Toussaint, T. Basar, and F. Bullo, “Tracking for nonlinear underactuated surface vessels with generalized forces”, Proc. IEEE Int. Conf. Control Appl., Anchorage, AK, Vol. 1, pp. 355–360, 2000.
校內:2024-12-31公開