簡易檢索 / 詳目顯示

研究生: 張騰濬
Chang, Teng-Jun
論文名稱: 以模糊領結法探討鐵路列車出軌事故因子與風險等級 - 以臺鐵為例
Exploring the Factors and Risk Levels of Train Derailment by Using Fuzzy Bowtie Analysis - A Case Study on Taiwan Railways Administration
指導教授: 鄭永祥
Cheng, Yung-Hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 113
中文關鍵詞: 鐵路列車出軌風險評估失效樹分析事件樹分析領結分析模糊集合理論
外文關鍵詞: Derailment, Risk Assessment, Fault Tree Analysis, Event Tree Analysis, Bowtie Analysis, Fuzzy Sets Theory
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軌道運輸提供舒適、可靠及安全的運輸服務。雖鐵路系統之安全也不斷的被提升,然一旦鐵路事故發生便產生極大之傷亡。在鐵路事故中,列車出軌的頻率雖非首位,但卻可能造成嚴重的人員傷亡、財產損失及營運延誤。了解造成列車出軌的因素,以及各個因素間如何相互影響,並找出引發一系列疏失的根本因果關係,才能採取有效改善策略。
    本研究將運用過去十年間臺鐵之鐵路出軌事故資料,以及整合國家運輸安全調查委員會 (TTSB), Rail Safety and Standards Board (RSSB), Det Norske Veritas (DNV) 之列車出軌相關調查報告,利用領結分析 (Bowtie Analysis) 為架構,整合失效樹分析 (Fault Tree Analysis) 以及事件樹分析 (Event Tree Analysis),並運用模糊集合推估基本事件發生機率,探討在不同因子組合下造成列車出軌事故的發生機率及嚴重度,以評估其風險等級。
    本研究之成果可做為未來臺鐵進行出軌事故防範之重要分析工具,並利用所獲致之實證結果進行出軌事故的安全改善策略,亦可事故後續緊急應變及旅客處理程序研擬之參考。而本研究所構建的出軌事故風險分析模型也可推廣讓不同軌道運輸系統未來進行風險分析應用之參考。

    Rail transportation provides comfortable, reliable and safe transportation services. Although the safety of the railway system has been continuously improved, once a railway accident occurs, it will cause great casualties. In railway accidents, although the frequency of derailment is not the first, it may cause serious casualties, property damage and operation delay. Only by understanding the factors that cause derailments and how each factor affects each other, and finding out the root cause and effect of a series of failures, can effective improvement strategies be adopted.
    This study will use the derailment accident data of Taiwan Railways Administration in the past ten years, and integrate the train derailment related investigation reports of TTSB, RSSB, and DNV, use Bowtie Analysis as the framework, integrate Fault Tree Analysis and Event Tree Analysis, and using Fuzzy Sets Theory to estimate the occurrence probability of basic events, discuss the occurrence probability and severity of derailment accidents under different factor combinations, so as to evaluate its risk level.
    The results of this study can be used as an important analysis tool for TRA to prevent derailment accidents in the future, and use the obtained empirical results to implement safety improvement strategies for derailment accidents. It can also be used as a reference for the development of subsequent emergency response and passenger handling procedures. The derailment accident risk analysis model constructed in this research can also be used as a reference for future risk analysis and application of different rail transportation systems.

    摘要 i 誌謝 vi 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究範圍與對象 7 1.4 研究架構 8 第二章 文獻回顧 9 2.1 風險評估 10 2.2 列車出軌事故 11 2.3 事故因果模型 (Accident Causation Model) 13 2.3.1 人因分析暨分類系統 (HFACS) 13 2.3.2 領結分析 (Bowtie Analysis) 16 2.4 安全意識 17 2.5 小結 18 第三章 研究方法 19 3.1 研究流程 20 3.2 領結分析 (Bowtie Analysis) 22 3.2.1 領結分析模型建構 22 3.2.2 失效樹分析 26 3.2.3 事件樹分析 30 3.3 模糊集合理論 (Fuzzy Sets Theory ) 32 3.3.1 模糊集合設定 34 3.3.2 專家啟發 36 3.3.3 模糊化與聚合 37 3.3.4 解模糊化 39 第四章 調查內容 40 4.1 資料蒐集與描述 41 4.1.1 超速 (Overspeed) 導致列車出軌 41 4.1.2 異物侵入 (Trespass) 導致列車出軌 42 4.2 專家問卷設計 43 4.2.1 基本事件問項設計 43 4.2.2 專家權重分配標準設計 43 4.2.3 問卷調查方式 46 第五章 實證分析 47 5.1 領結分析視覺化結果 48 5.1.1 超速導致列車出軌事故肇因 48 5.1.2 異物侵入導致列車出軌事故肇因 67 5.1.3 列車出軌事故後果與擴大因子 83 5.2 模糊領結分析結果 88 5.2.1 超速導致列車出軌事故情境 88 5.2.2 異物侵入導致列車出軌事故情境 97 第六章 結論與建議 102 6.1 結論 102 6.2 建議 102 6.3 研究貢獻 103 6.3.1 學術貢獻 103 6.3.2 實務貢獻 103 6.4 研究限制與未來研究方向 103 參考資料 104 附錄—專家問卷 109

    Aqlan, F., & Ali, E. M. (2014). Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. Journal of loss prevention in the process industries, 29, 39-48. https://doi.org/https://doi.org/10.1016/j.jlp.2014.01.006
    Badida, P., Balasubramaniam, Y., & Jayaprakash, J. (2019). Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. Journal of Natural Gas Science and Engineering, 66, 284-292. https://doi.org/https://doi.org/10.1016/j.jngse.2019.04.010
    Baysari, M. T., McIntosh, A. S., & Wilson, J. R. (2008). Understanding the human factors contribution to railway accidents and incidents in Australia. Accident Analysis & Prevention, 40(5), 1750-1757. https://doi.org/https://doi.org/10.1016/j.aap.2008.06.013
    Bešinović, N. (2020). Resilience in railway transport systems: a literature review and research agenda. Transport Reviews, 40(4), 457-478. https://doi.org/https://doi.org/10.1080/01441647.2020.1728419
    Bird, F. E., & Matthysen, H. (1984). Management guide to loss control. National Occupational Safety Association, with the permission of the ….
    Brumsen, M. (2011). Case description: the ICE train accident near Eschede. In European business ethics cases in context (pp. 157-168). Springer.
    Cao, Y., An, Y., Su, S., Xie, G., & Sun, Y. (2022). A statistical study of railway safety in China and Japan 1990–2020. Accident Analysis & Prevention, 175, 106764. https://doi.org/https://doi.org/10.1016/j.aap.2022.106764
    Chen, L., Zhao, Y., & Zhao, T. (2015). An AcciMap analysis on the China-Yongwen railway accident. In Engineering Asset Management-Systems, Professional Practices and Certification (pp. 1247-1253). Springer. https://doi.org/https://rdcu.be/djaiT
    Chen, S.-J., & Hwang, C.-L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy multiple attribute decision making: Methods and applications (pp. 289-486). Springer.
    de Ruijter, A., & Guldenmund, F. (2016). The bowtie method: A review. Safety science, 88, 211-218. https://doi.org/https://doi.org/10.1016/j.ssci.2016.03.001
    Dekker, S. (2016). Drift into failure: From hunting broken components to understanding complex systems. CRC Press.
    Dhillon, B. S. (2008). Mining equipment reliability. Springer.
    Dindar, S., Kaewunruen, S., & An, M. (2020). Bayesian network-based human error reliability assessment of derailments. Reliability Engineering & System Safety, 197, 106825.
    DNV. (2011). Assessment of freight train derailment risk reduction measures.
    Ebrahimi, H., Sattari, F., Lefsrud, L., & Macciotta, R. (2021). Analysis of train derailments and collisions to identify leading causes of loss incidents in rail transport of dangerous goods in Canada. Journal of loss prevention in the process industries, 72, 104517.
    Elvik, R. (2009). The Power Model of the relationship between speed and road safety: update and new analyses.
    Ericson, C. A. (1999). Fault tree analysis. System Safety Conference, Orlando, Florida,
    Grant, E., Salmon, P. M., Stevens, N. J., Goode, N., & Read, G. J. (2018). Back to the future: What do accident causation models tell us about accident prediction? Safety science, 104, 99-109.
    Hollnagel, E. (2017). FRAM: the functional resonance analysis method: modelling complex socio-technical systems. Crc Press.
    Hsu, H.-M., & Chen, C.-T. (1996). Aggregation of fuzzy opinions under group decision making. Fuzzy sets and systems, 79(3), 279-285.
    Huang, W., Zhang, Y., Yu, Y., Xu, Y., Xu, M., Zhang, R., De Dieu, G. J., Yin, D., & Liu, Z. (2021). Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method. Reliability Engineering & System Safety, 205, 107236.
    Iden, R., & Shappell, S. A. (2006). A human error analysis of US fatal highway crashes 1990–2004. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
    Joborn, M., & Ranjbar, Z. (2022). Understanding causes of unpunctual trains: Delay contribution and critical disturbances. Journal of Rail Transport Planning & Management, 23, 100339.
    Khakzad, N., Khan, F., & Amyotte, P. (2013). Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Safety and Environmental Protection, 91(1-2), 46-53.
    Lavasani, S. M., Ramzali, N., Sabzalipour, F., & Akyuz, E. (2015). Utilisation of Fuzzy Fault Tree Analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Engineering, 108, 729-737.
    Leitner, B. (2017). A general model for railway systems risk assessment with the use of railway accident scenarios analysis. Procedia engineering, 187, 150-159.
    Leveson, N. (2004). A new accident model for engineering safer systems. Safety science, 42(4), 237-270.
    Li, K., & Wang, S. (2018). A network accident causation model for monitoring railway safety. Safety science, 109, 398-402.
    Liu, P., Yang, L., Gao, Z., Li, S., & Gao, Y. (2015). Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Safety science, 79, 344-357.
    Liu, R., Cheng, W., Yu, Y., & Xu, Q. (2018). Human factors analysis of major coal mine accidents in China based on the HFACS-CM model and AHP method. International journal of industrial ergonomics, 68, 270-279.
    Liu, X., Saat, M. R., & Barkan, C. P. (2017). Freight-train derailment rates for railroad safety and risk analysis. Accident Analysis & Prevention, 98, 1-9.
    Markowski, A. S., Mannan, M. S., & Bigoszewska, A. (2009). Fuzzy logic for process safety analysis. Journal of loss prevention in the process industries, 22(6), 695-702.
    Martey, E. N., & Attoh-Okine, N. (2019). Analysis of train derailment severity using vine copula quantile regression modeling. Transportation research part C: emerging technologies, 105, 485-503.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81.
    Milligan, F. J. (2007). Establishing a culture for patient safety–The role of education. Nurse education today, 27(2), 95-102.
    MIRI, L. M., Wang, J., Yang, Z., & Finlay, J. (2011). Application of fuzzy fault tree analysis on oil and gas offshore pipelines.
    Nielsen, D. S. (1971). The cause/consequence diagram method as a basis for quantitative accident analysis. Risø National Laboratory.
    Nilsson, G. (2004). Traffic safety dimensions and the power model to describe the effect of speed on safety (Vol. 221). Univ.
    O'Connor, P. (2008). HFACS with an additional layer of granularity: validity and utility in accident analysis. Aviation, space, and environmental medicine, 79(6), 599-606.
    Onisawa, T. (1988). An approach to human reliability in man-machine systems using error possibility. Fuzzy sets and systems, 27(2), 87-103.
    Perrow, C. (1981). Normal accident at three mile island. Society, 18(5), 17-26.
    Perrow, C. (1999). Organizing to reduce the vulnerabilities of complexity. Journal of contingencies and crisis management, 7(3), 150-155.
    Prussia, G. E., Willis, G. P., & Rao, M. (2019). Influences on safety consciousness in a utility company: A sequential mediation model. Journal of safety research, 68, 119-129.
    Rasmussen, J. (1997). Risk management in a dynamic society: a modelling problem. Safety science, 27(2-3), 183-213.
    Reason, J. (1990). Human error. Cambridge university press.
    Reinach, S., & Viale, A. (2006). Application of a human error framework to conduct train accident/incident investigations. Accident Analysis & Prevention, 38(2), 396-406.
    Robinson, M., Vasic, G., Scott, P., Franklin, F., Lafaix, B., Gilmartin, B., Kozyr, G., Schöbel, A., Zarembski, A., & Ripke, B. (2012). Summary report and database of derailments incidents.
    RSSB. (2018). Cross-industry Trespass Bowtie Diagram.
    RSSB. (2021). Train Overspeed BowTie Analysis.
    San Kim, D., & Yoon, W. C. (2013). An accident causation model for the railway industry: Application of the model to 80 rail accident investigation reports from the UK. Safety science, 60, 57-68.
    Scarborough, A., & Pounds, J. (2001). Retrospective human factors analysis of ATC operational errors. 11th International Symposium on Aviation Psychology, Columbus, OH,
    Senol, Y. E., Aydogdu, Y. V., Sahin, B., & Kilic, I. (2015). Fault tree analysis of chemical cargo contamination by using fuzzy approach. Expert Systems with Applications, 42(12), 5232-5244.
    Shahriar, A., Sadiq, R., & Tesfamariam, S. (2012). Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis. Journal of loss prevention in the process industries, 25(3), 505-523.
    Shappell, S. A., & Wiegmann, D. A. (2000). The human factors analysis and classification system--HFACS.
    Sugeno, M., & Kang, G. (1986). Fuzzy modelling and control of multilayer incinerator. Fuzzy sets and systems, 18(3), 329-345.
    Theophilus, S. C., Esenowo, V. N., Arewa, A. O., Ifelebuegu, A. O., Nnadi, E. O., & Mbanaso, F. U. (2017). Human factors analysis and classification system for the oil and gas industry (HFACS-OGI). Reliability Engineering & System Safety, 167, 168-176.
    Uğurlu, Ö., Yıldız, S., Loughney, S., & Wang, J. (2018). Modified human factor analysis and classification system for passenger vessel accidents (HFACS-PV). Ocean Engineering, 161, 47-61.
    UKCAA. (2023). Bowtie / Bowtie elements. UK Civil Aviation Authority. https://www.caa.co.uk/safety-initiatives-and-resources/working-with-industry/bowtie/bowtie-elements/
    Wang, D., Zhang, P., & Chen, L. (2013). Fuzzy fault tree analysis for fire and explosion of crude oil tanks. Journal of loss prevention in the process industries, 26(6), 1390-1398.
    Westaby, J. D., & Lee, B. C. (2003). Antecedents of injury among youth in agricultural settings: A longitudinal examination of safety consciousness, dangerous risk taking, and safety knowledge. Journal of safety research, 34(3), 227-240.
    Xi, Y., Hu, S., Yang, Z., Fu, S., & Weng, J. (2022). Analysis of safety climate effect on individual safety consciousness creation and safety behaviour improvement in shipping operations. Maritime Policy & Management, 1-16.
    Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1), 3-28.
    Zhan, Q., Zheng, W., & Zhao, B. (2017). A hybrid human and organizational analysis method for railway accidents based on HFACS-Railway Accidents (HFACS-RAs). Safety science, 91, 232-250.
    Zhang, M., Zhang, D., Goerlandt, F., Yan, X., & Kujala, P. (2019). Use of HFACS and fault tree model for collision risk factors analysis of icebreaker assistance in ice-covered waters. Safety science, 111, 128-143.
    Zhou, J.-L., & Lei, Y. (2018). Paths between latent and active errors: Analysis of 407 railway accidents/incidents’ causes in China. Safety science, 110, 47-58.
    Zio, E. (2018). The future of risk assessment. Reliability Engineering & System Safety, 177, 176-190.
    交通部臺灣鐵路管理局. (2022). 交通部臺灣鐵路管理局行車事故資料.
    國家運輸安全調查委員會. (2018a). 中華民國 107 年 10 月 21 日臺鐵第 6432 次車新馬站重大鐵道事故調查報告 (第一冊) (補強).
    國家運輸安全調查委員會. (2018b). 中華民國 107 年 10 月 21 日臺鐵第 6432 次車新馬站重大鐵道事故調查報告 (第二冊) (補強).
    國家運輸安全調查委員會. (2021). 中華民國 110 年 4 月 2 日交通部臺灣鐵路管理局第 408 次車清水隧道重大鐵道事故調查報告.

    無法下載圖示 校內:2028-08-25公開
    校外:2028-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE