| 研究生: |
張崇瑋 Chang, Chung-Wei |
|---|---|
| 論文名稱: |
化學氣相沉積法成長氮化銦奈米線及其鋰離子電池負極材料應用 Growth of Indium Nitride Nanowires by Chemical Vapor Deposition and Their Applications to Lithium Ion Battery as Anode Electrode |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氮化銦 、化學氣相沉積法 、奈米線 、鋰離子電池 |
| 外文關鍵詞: | Indium nitride, CVD, Nanowire, lithium ion battery |
| 相關次數: | 點閱:63 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主軸為氮化銦奈米線成長討論,並於末節討論氮化銦奈米結構應用於鋰電池負極的未來性。在製程氮化銦奈米線的實驗中,成功改良製程方式使用低製程成本的熱化學氣相沉積法的方式成長於矽(111)及不鏽鋼錠上,經由SEM分析顯示為無方向性散亂成長之一維奈米線,並同時存在堆疊的塔狀結構及帶狀結構,並能由高解析TEM分析,於高倍率影像中能觀察到因VLS機制而存在的球狀顆粒,並由擇區電子繞射結果顯示塔狀結構奈米線沿著[0002]方向成長而帶狀奈米線則是沿著[101 ̅0]方向成長,於實驗中藉由改變製成溫度、工作壓力、氣體流量、催化劑厚度……等因素探討對氮化銦奈米結構純度、線密度的影響,以材料動力學探討造成其形貌差異之因素,製程的過程為VLS(vapor liquid solid))及SLS(solid liquid solid))機制的結合,故以SVLS(solid vapor liquid solid)機制稱之,於段落末段提出其成長地圖(growth map)。電性特性的量測利用電子束微影的方式進行單根量測,測量其導電率位於十的負四次方歐姆公分。
於末節的實驗中將成長於不鏽鋼錠極片上組成硬幣電池進行鋰電池充放電循環測試,探討一維及三維材料對循環測試造成的差異及氮化銦成為新一代負極材料的未來性,經由理論電容量的計算氮化銦的理論電容量高達1164.6 mAh/g,約為目前商用炭材的三倍,實驗中亦能達到886 mAh/g。
此次研究展示了一個新的製程概念,藉由預先蒸鍍的方式使得合金相的產生更為直接,並利用了VLS機制的低基板選擇性及氮化銦奈米線本質低的電阻率,展現出氮化銦成為高電容量的鋰二次電池負極材料的可行性。
InN nanowires with random orientations are grown densely on Au/In-coated Si (111) and stainless steel substrates by a modified thermal chemical vapor deposition method. Scanning electron microscopy images show that the as-grown nanowires are characterized by either parallel or sawtooth sides. High resolution transmission electron microscopy images and selected area electron diffraction patterns reveal that both types of nanowires contain Au catalytic particles on tops and the growth direction is along the [0001] and [101 ̅0] axis for sawtooth and parallel-sided nanowires, respectively. Through e-beam lithography, resistivity of single nanowires taken by four-point probe method all falls on the order of 10-4 Ω•cm, demonstrating to own great conductivity. For the application in lithium ion battery, coin cells are assembled using the InN nanowires grown on stainless substrate as negative electrodes and cycle performance testing is performed. The capacity could reach 886 mAh/g, which is more than two times of the commercial carbon materials. InN nanowires are testified to be promising in battery applications.
[1] M. D. Gerngross, E. Quiroga-Gonzalez, J. Carstensen, and H. Foll, "Single-Crystalline Porous Indium Phosphide as Anode Material for Li-Ion Batteries," Journal of the Electrochemical Society, vol. 159, pp. A1941-A1948, 2012.
[2] W. B. PEARSON, A Handbook of LATTICE SPACINGS AND STRUCTURES OF METALS AND ALLOYS, 1967.
[3] Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, "Experimental studies of lattice dynamical properties in indium nitride," Journal of Physics-Condensed Matter, vol. 16, pp. R381-R414, 2004.
[4] P. Van Camp, V. Van Doren, and J. Devreese, "Pressure dependence of the electronic properties of cubic III-V In compounds," Physical Review B, vol. 41, pp. 1598-1602, 1990.
[5] D. Bagayoko, L. Franklin, and G. L. Zhao, "Predictions of electronic, structural, and elastic properties of cubic InN," Journal of Applied Physics, vol. 96, p. 4297, 2004.
[6] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, pp. 10024-10027, 1997.
[7] K. Kim, W. Lambrecht, and B. Segall, "Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN," Physical Review B, vol. 53, pp. 16310-16326, 1996.
[8] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," Journal of Applied Physics, vol. 82, p. 2833, 1997.
[9] A. A. Marmalyuk, R. K. Akchurin, and V. A. Gorbylev, "Evaluation of elastic constants of AlN, GaN, and InN," Inorganic Materials, vol. 34, pp. 691-694, Jul 1998.
[10] J. A. Chisholm, D. W. Lewis, and P. D. Bristowe, "Classical simulations of the properties of group-III nitrides," Journal of Physics: Condensed Matter, vol. 11, pp. L235-L239, 1999.
[11] T. L. Tansley and C. P. Foley, "Infrared absorption in indium nitride," Journal of Applied Physics, vol. 60, p. 2092, 1986.
[12] F. Bechstedt, F. Fuchs, and J. Furthmüller, "Spectral properties of InN and its native oxide from first principles," physica status solidi (a), vol. 207, pp. 1041-1053, 2010.
[13] F. B. Naranjo, M. A. Sánchez-Garcı́a, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, "Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy," Applied Physics Letters, vol. 80, p. 231, 2002.
[14] B. Arnaudov, T. Paskova, P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, et al., "Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels," Physical Review B, vol. 69, 2004.
[15] K. K. Madapu, N. R. Ku, S. Dhara, C. P. Liu, and A. K. Tyagi, "Morphology of InN nanorods using spectroscopic Raman imaging," Journal of Raman Spectroscopy, vol. 44, pp. 791-794, 2013.
[16] T. Inushima, T. Shiraishi, and V. Y. Davydov, "Phonon structure of InN grown by atomic layer epitaxy," Solid State Communications, vol. 110, pp. 491-495, 1999.
[17] V. W. L. Chin, T. L. Tansley, and T. Osotchan, "Electron mobilities in gallium, indium, and aluminum nitrides," Journal of Applied Physics, vol. 75, p. 7365, 1994.
[18] J. Kuzmik and A. Georgakilas, "Proposal of High-Electron Mobility Transistors With Strained InN Channel," IEEE Transactions on Electron Devices, vol. 58, pp. 720-724, 2011.
[19] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, et al., "Effects of the narrow band gap on the properties of InN," Physical Review B, vol. 66, 2002.
[20] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, et al., "Physical properties of InN with the band gap energy of 1.1eV," Journal of Crystal Growth, vol. 227-228, pp. 481-485, 2001.
[21] R. Jones, K. Yu, S. Li, W. Walukiewicz, J. Ager, E. Haller, et al., "Evidence for p-Type Doping of InN," Physical Review Letters, vol. 96, 2006.
[22] S. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, et al., "p-Type InN nanowires," Nano Lett, vol. 13, pp. 5509-13, Nov 13 2013.
[23] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, "Intrinsic electron accumulation at clean InN surfaces," Physical Review Letters, vol. 92, p. 036804, 2004.
[24] Y. Wu and P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[25] T. B. Massalski, "Binary alloy phase diagrams," ASM International, 1990.
[26] H. Song, Y. Guo, A. Yang, H. Wei, X. Xu, J. Liu, et al., "The role of zinc dopant and the temperature effect on the controlled growth of InN nanorods in metal–organic chemical vapor deposition system," CrystEngComm, vol. 12, p. 3936, 2010.
[27] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, et al., "Mechanisms of 1D crystal growth in reactive vapor transport: indium nitride nanowires," Nano Lett, vol. 5, pp. 1625-31, 2005.
[28] H. Liu, S. Xie, and G. Cheng, "Vapor–liquid–solid meets vapor–solid growth mechanism for fabricating high quality indium nitride crystallites," CrystEngComm, vol. 13, p. 3649, 2011.
[29] S. S. Brenner and G. W. Sears, "Mechanism of whisker growth—III nature of growth sites," Acta Metallurgica, vol. 4, pp. 268-270, 1956.
[30] P. Yang and C. M. Lieber, "Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites," Journal of Materials Research, vol. 12, pp. 2981-2996, 2011.
[31] F. Zhang, Q. Wu, Y. Zhang, J. Zhu, N. Liu, J. Yang, et al., "Chemical vapor deposition growth of InN nanostructures: Morphology regulation and field emission properties," Applied Surface Science, vol. 258, pp. 9701-9705, 2012.
[32] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, et al., "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism," Chemical Physics Letters, vol. 323, pp. 224-228, 2000.
[33] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)," Applied Physics Letters, vol. 90, p. 123117, 2007.
[34] A. Lotsari, G. P. Dimitrakopulos, T. Kehagias, A. O. Ajagunna, E. Iliopoulos, A. Georgakilas, et al., "Structural characterization of InN epilayers grown on r -plane sapphire by plasma-assisted MBE," physica status solidi (c), vol. 9, pp. 534-537, 2012.
[35] N. J. Ku, J. H. Huang, C. H. Wang, H. C. Fang, and C. P. Liu, "Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array," Nano Lett, vol. 12, pp. 562-8, 2012.
[36] G. Xu, Z. Li, J. Baca, and J. Wu, "Probing Nucleation Mechanism of Self-Catalyzed InN Nanostructures," Nanoscale Res Lett, vol. 5, pp. 7-13, 2009.
[37] W. C. Hou, T. H. Wu, W. C. Tang, and F. C. N. Hong, "Nucleation control for the growth of vertically aligned GaN nanowires," Nanoscale Research Letters, vol. 7, 2012.
[38] W. C. Hou and F. C. N. Hong, "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires," Nanotechnology, vol. 20, 2009.
[39] 沈卉紋 and 劉全璞, "銦摻雜對氧化鋅奈米結構成長與電性之研究," 國立成功大學碩士論文, 2010.
[40] A. Manthiram and J. Kim, "Low Temperature Synthesis of Insertion Oxides for Lithium Batteries," Chemistry of Materials, vol. 10, pp. 2895-2909, 1998.
[41] 蔡英文 and 黃炳照, "鋰離子電池陰極材料之研究與發展," THe Chinese Chem. SOC., vol. 62, pp. 251-262, 2004.
[42] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, et al., "High-performance lithium battery anodes using silicon nanowires," Nat Nanotechnol, vol. 3, pp. 31-5, 2008.
[43] K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, et al., "Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes," Science, vol. 312, pp. 885-8, 2006.
[44] 李日琪 and 費定國, "鋰離子電池陽極碳材料開發," 國立中央大學碩士論文, 2000.
[45] J. Liu, Y. Li, R. Ding, J. Jiang, Y. Hu, X. Ji, et al., "Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability," The Journal of Physical Chemistry C, vol. 113, pp. 5336-5339, 2009.
[46] 陳金銘, 工業材料, vol. 133, p. 85, 1997.
[47] S. Megahed and B. Scrosati, "Lithium-ion rechargeable batteries," Journal of Power Sources, vol. 51, pp. 79-104, 1994.
[48] A. M. Wilson, "Lithium Insertion in Carbons Containing Nanodispersed Silicon," Journal of The Electrochemical Society, vol. 142, p. 326, 1995.
[49] Y. Ein-Eli, "Chemical Oxidation: A Route to Enhanced Capacity in Li-Ion Graphite Anodes," Journal of The Electrochemical Society, vol. 144, p. 2968, 1997.
[50] 劉茂煌, "非碳鋰電池負極材料," 工業材料, vol. 157, p. 133, 2000.
[51] B. A. Boukamp, "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," Journal of The Electrochemical Society, vol. 128, p. 725, 1981.
[52] 楊模樺, "鋰離子二次電池負極新材料介紹--含錫氧化物," 工業材料, vol. 133, p. 81, 2000.
[53] H. Li, X. J. Huang, and L. Q. Chen, "Anodes based on oxide materials for lithium rechargeable batteries," Solid State Ionics, vol. 123, pp. 189-197, 1999.
[54] K. T. Park, F. Xia, S. W. Kim, S. B. Kim, T. Song, U. Paik, et al., "Facile Synthesis of Ultrathin ZnO Nanotubes with Well-Organized Hexagonal Nanowalls and Sealed Layouts: Applications for Lithium Ion Battery Anodes," The Journal of Physical Chemistry C, vol. 117, pp. 1037-1043, 2013.
[55] 汪建民, "材料分析 Material Analysis," 1998.
[56] "Characterization of SnO2, In2O3, and ITO films prepared by thermal oxidation of DC-sputtered Sn, In and In–Sn films."
[57] H. Liu, L. Shi, X. Geng, R. Su, G. Cheng, and S. Xie, "Reactant-governing growth direction of indium nitride nanowires," Nanotechnology, vol. 21, p. 245601, 2010.
[58] C. Y. Nam, D. Tham, and J. E. Fischer, "Effect of the polar surface on GaN nanostructure morphology and growth orientation," Applied Physics Letters, vol. 85, p. 5676, 2004.
[59] X. M. Cai, A. B. Djurišić, M. H. Xie, C. S. Chiu, and S. Gwo, "Growth mechanism of stacked-cone and smooth-surface GaN nanowires," Applied Physics Letters, vol. 87, p. 183103, 2005.
[60] H. Li, "Anodes based on oxide materials for lithium rechargeable batteries," Solid State Ionics, vol. 123, pp. 189-197, 1999.
[61] J. Liu, Y. Li, X. Huang, G. Li, and Z. Li, "Layered Double Hydroxide Nano- and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-Ion Battery Electrodes," Advanced Functional Materials, vol. 18, pp. 1448-1458, 2008.
[62] P. Paolo Prosini and F. Cardellini, "Electrochemical lithium extraction from β-lithium nitride," Electrochemistry Communications, vol. 4, pp. 853-856, 2002.