| 研究生: |
柯雅芳 Ke, Ya-Fang |
|---|---|
| 論文名稱: |
梓醇的降血糖作用之研究 Antihyperglycemic Action of Catalpol |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 梓醇 、糖尿病 |
| 外文關鍵詞: | catalpol, diabetes mellitus |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
梓醇 (Catalpol)係純化自地黃所得的一種單類化合物。經由尾靜脈注射梓醇到streptozotocin (STZ)誘導的胰島素依賴型糖尿病(insulin-dependent diabetes mellitus ; IDDM)大白鼠,可產生濃度遞增性(dose-dependent)的降血糖作用。而且,對於外給葡萄糖所進行的葡萄糖挑戰試驗(glucose challenge test),梓醇可增加正常老鼠對葡萄糖的利用率。在離體(in vitro)試驗方面,取STZ糖尿病老鼠的骨骼肌,梓醇會以劑量相關的方式來促進 [14C] 2-deoxy-glucose進入到骨骼肌內。另外,在STZ糖尿病老鼠的肝臟,梓醇對於肝糖的合成(glycogen synthesis)有顯著的刺激效果。
另一方面,以C2C12小鼠骨骼肌細胞株 (mouse myoblast cell line)進行實驗來了解梓醇的作用方式。結果梓醇能以劑量相關的形式增強C2C12小鼠肌母細胞對葡萄糖的吸回作用;而這項作用可被α1-adrenoceptor(α1-AR)阻斷劑prazosin及α1A-AR阻斷劑RS17053所解消。同時,梓醇隨著濃度的增加亦可逐漸取代α1-AR的[3H]prazosin在C2C12肌母細胞的結合。而且以phospholipase C (PLC) 的阻斷劑U73122,及protein kinase C (PKC) 的阻斷劑chelerythrine、GF109203X將α1-AR活化的訊息傳遞路徑阻斷後,亦可解消梓醇原先可增強C2C12肌母細胞對葡萄糖的吸回作用。另外,α1-AR的阻斷劑prazosin及α1A-AR阻斷劑RS17053會以劑量相關的形式阻斷梓醇原先在IDDM大白鼠所產生的降血糖效果。因此,在沒有胰島素的存在下,α1-AR的阻斷劑prazosin及α1A-AR阻斷劑RS17053的降血糖作用和α1A-AR有關。
使用enzyme-linked immunosorbent assay (ELISA)技術,檢測血中的腦內啡(β-endorphin)時,在IDDM大白鼠發現梓醇確實會促進血中β-endorphin的含量;這項作用會被α1-AR的阻斷劑prazosin及α1A-AR阻斷劑RS17053所解消。同時,嗎啡型受體阻斷劑naloxone及naloxonazine會依劑量相關性阻斷梓醇原先在IDDM大白鼠的降血糖作用。另外,在嗎啡型受體剔除(opioid -receptors knockout)的胰島素依賴型糖尿病小鼠,梓醇也無法再產生降血糖的作用。由此可知,梓醇對IDDM大白鼠所產生的降血糖作用與嗎啡型受體的活化有關。在去除腎上腺髓質(adrenal medulla)的IDDM大白鼠,梓醇無法再產生降血糖的現象。由此可知,梓醇乃藉由活化腎上腺的α1-AR,促使β-endorphin釋放而得到降血糖的效果。另一方面,利用靜脈注射給藥的方式,每日注射梓醇 0.1 mg/kg六次,處理兩天,取其老鼠的肝臟及骨骼肌,利用RT-PCR、Northern及Western immunoblotting來看糖尿病老鼠骨骼肌之葡萄糖第四型轉移蛋白(glucose transporter subtype 4 form; GLUT4)和與insulin signaling有關的Akt Ser473磷酸化及肝臟之解糖酵素 (phosphoenolpyruvate carboxykinase; PEPCK)的變化。結果發現,梓醇可增強IDDM大白鼠骨骼肌GLUT4和Akt Ser473磷酸化的表現,而且,IDDM大白鼠肝臟亢進的PEPCK基因也會受到抑制;以上三種作用皆可被naloxone所解消。
綜合以上的結果,在IDDM大白鼠,梓醇的降血糖作用主要是藉由活化位於腎上腺髓質的α1A-AR,加強腎上腺髓質釋放β-endorphin的能力,進而作用於週邊組織的嗎啡型受體,藉以增強糖尿病老鼠骨骼肌對葡萄糖的吸入作用,使過多的葡萄糖能有效地由細胞外進入細胞內儲存,同時,亦減緩糖尿病老鼠肝臟葡萄糖的新生,因而解消了糖尿病老鼠的高血糖現象。
Catalpol, a monoterpene compound ,was isolated from “Die-Huang”. Catalpol produced a dose-dependent hypoglycemic action in streptozotocin -induced diabetic rats after an intravenous injection (i.v.). Catalpol at the effective dose (0.1mg/kg) significantly attenuated the increase of plasma glucose induced by intravenous glucose challenge test in Wistar rats. In vitro, catalpol enhanced the uptake of 14C 2-deoxy-glucose (2-DG) into skeletal muscle in a concentration-dependent manner. In the hepatocytes isolated from diabetic rats, catalpol also increased the synthesis of glycogen.
Catalpol enhanced the uptake of radioactive glucose into mouse myoblast cell line C2C12 cells in a dose-dependent manner, which was abolished by α1-adrenoceptor(α1-AR) blocker prazosin and α1A-AR blocker RS17053 pretreatment. Effect of catalpol on α1-AR was further supported by the displacement of [3H] prazosin binding in C2C12 cells. The plasma glucose lowering effect of catalpol in the STZ-diabetic rats was also abolished by the pretreatment with prazosin and RS17053. Pharmacological inhibition of phospholipase C (PLC) by U73122 resulted in a concentration-dependent decrease in catalpol-stimulated uptake of radioactive glucose into C2C12 cells, although, the inactive congener, U73343, failed to block catalpol-stimulated glucose uptake. Moreover, chelerythrine diminished the action of catalpol at concentration sufficient to inhibit protein kinase C (PKC). The obtained data suggest that an activation of α1A-AR may play an important role in the plasma glucose lowering action of catalpol in the absence of insulin.
Injection of catalpol at the effective dose increased the plasma β-endorphin in STZ-diabetic rats that can be abolished by α1A-AR antagonists. The plasma glucose lowering effect of catalpol was also abolished by pretreatment with naloxone and naloxonazine at doses sufficient to block opioid -receptors. Plasma glucose lowering action of catalpol disappeared in opioid -receptors knockout mice, while the plasma glucose lowering response to catalpol was still observed in wild-type mice. Also, catalpol enhanced the β-endorphin release from the isolated adrenal medulla in a concentration-dependent manner. Bilateral adrenalectomy resulted in the loss of plasma glucose lowering effect of catalpol.
The mRNA and protein levels of glucose transporter subtype 4 form (GLUT4) in skeletal muscle was raised by catalpol after repeated treatment for three days in STZ-diabetic rats. Otherwise, similar repeated treatment with catalpol reversed the elevated mRNA and protein level of phosphoenolpyruvate carboxykinase (PEPCK) in liver of STZ-diabetic rats to the normal level. Also, the protein level of Akt Ser473 phosphorylation in skeletal muscle was raised by catalpol after similar repeated treatment. Pharmacological inhibition of opioid μ-receptors deleted these effects of catalpol. These results suggest that release of β-endorphin from the adrenal gland seems responsible for the lowering of plasma glucose in STZ-diabetic rats by catalpol through an activation of α1A-AR. Activation of opioid -receptors by the released β-endorphin can increase the utilization of glucose and decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin.
Akil, H., Watson, S.J.,Young, E., Lewis, M.E., Khachaturian, H. and Walker, J.M. Endogenous opioid: biology and function. Ann. Rev. Neurosci. 7: 223-255, 1984
Andrea L. H., Donna R., and Jerrold O. Exercise and thiazolidinedion therapy normalize insulin action in the obese Zucker fatty rat. Diabetes 49:2154-2159, 2000
Arefolov, V.A., Dmitriev, A.D., Tennov, A.V. and Val’dman, A.V. Detection of the pro-opiomelanocortin peptide fragments-beta-endorphin and ACTH-in the adrenals of rats and mice by immunohistochemistry. Biull. Eksp. Biol. Med. 101: 445-447, 1986
Attwood, P.A. and Keech, D.B. Pyruvate carboxylase. Curr. Top Cell. Regul. 23: 1-55, 1984
Baque, S., Montell, E., Camps, M., Guinovart, J.J., Zorzano, A. and Gomez-Foix, A.M. Overexpression of glycogen phosphorylase increase GLUT4 expression and glucose transport in cultured skeletal human muscle. Diabetes 47: 1185-1192, 1998
Baron, A.D., Brechtel, G., Wallace, P. and Edelman, S.V. Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in human. Am. J. Physiol. 255: E769-E774, 1988
Basbaum, A.I., Fields, H.L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 7: 309-338, 1984
Berger, J., Biswas, C., Vicaro, P.P., Strout, H.V., Saperstein, R. and Pilch, P.F. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340: 70-72, 1989
Bruni, J.F., Watkins, W.B. and Yen, S.S.C. -Endorphin in the human endocrine pancreas. J. Clin. Endocrinol. Metab.49: 649-651, 1979
Chang, H.M., Paul, P.H. Pharmacology and Applications of Chinese Materia medica. 2th Edition, World Scientific, Singapore, pp.145-147, 1986
Chang, S.L., Lin, J.G., Chi, T.C., Liu, I.M. and Cheng, J.T. An insulin-dependent hypoglycaemia induced by electroacupuncture at the Zhongwan (CV12) acupoint in diabetic rats. Diabetologia 42: 250-255, 1999
Chen, Y.A., Mestek, A., liu, J., Hurley, J.A. and Yu, L. Molecular cloning and functional expression of a -opioid receptor from rat brain. Mol. Pharmacol. 44: 8-12, 1993
Cheng, J.T., Liu, I.M., Chi, T.C., Su, H.C. and Chang, C.G. Stimulation of insulin release in rats by Die-Huang-Wan, a herbal mixture used in Chinese traditional medicine. J. Pharm. Pharmacol. 53:273-276, 2000
Curry, D.L. and Li, C.H. Stimulation of insulin secretion by beta-endorphin. Life Sci. 40: 2053-2058, 1987
Eizirik, D.L., Sandler, S. and Palmer, J.P. Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes 42: 1383-1391, 1993
Eric Haiduch, Gary J. Litherland, Harinder S. Hundal Protein kinase B (PKB/Akt)-a key regulator of glucose transport ? FEBS Lett. 492: 199-203, 2001
Evans, C.J., Keith, D.E., Morrison, H., Madendzo, K. and Edwards, R.H. Cloning of -opioid receptor by functional expression. Science 258: 1952-1955, 1992
Fry, J.R., Jones, C.A., Wiebkin, P., Bellemann, P. and Bridges, J.W. The enzymic isolation of adult rat hepatocytes in a functional and viable state. Anal. Biochem. 71: 741-750, 1975
Fukumoto, H., Kayano, T., Buse, J.B., Edwards, Y., Pilch, P.F., Bell, G.I. and Seino, S. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem. 264, 7776-7779, 1989
Garvey, W.T., Huecksteadt, T.P. and Birnbaum, M.J. Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245: 60-63, 1989
Giffin, B.F., Drake, R.L., Morris, R.E. and Cardell, R.R. Hepatic lobular patterns of phosphoenolpyruvate carboxykinase, glycogen synthase, and glycogen phosphorylase in fasted and fed rats. J. Histochem. Cytochem. 41: 1849-1862, 1993, 1993
Giugliano, D. Morphine, opioid peptides and pancreatic islet function. Diabetes Care 7: 92-98, 1984
Giugliano, D., Torella, R., Lefebvre, P.J. and D'Onofrio, F. Opioid peptides and metabolic regulation. Diabetologia 31: 3-15, 1988
Gliemann, J., Rees, W.D. and Foley, J.A. The fate of labeled glucose molecules in the rat adipocytes dependence on glucose concentration. Biochim. Biophys. Acta. 804: 68-76, 1984
Goldstein, D.A. and Massry, S.G. Diabetic nephropathy: clinical course and effect of hemodialysis. Nephrology 20:286-296, 1978
Goodyear, L.J., Hirshman, M.F., Smith, R.J. and Horton, E.S. Glucose transporter number, activity and isoform content in plasma membranes of red and white skeletal muscle. Am. J. Physiol. 261: E556-E561, 1991
Hamia, B., Marak, A.B., Jos, M.M. Two herbivore-deterrent iridoid glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fugus of plantago lanceolata L. Chemoecology 12: 185-192, 2002
Hanson, R.W. and Reshef, L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Ann. Rev. Biochem. 66: 581-611, 1997
Harris, M.I., Hadden, W.C., Knowler, W.C. & Bennett, P.H. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in the U.S. population aged 20-74 yr. Diabetes 36: 523-534, 1987
Hofmann, C., Lorenz, K., Williams, D., Palazuk, B.J. and Colca, J.R. Insulin sensitization in diabetic rat liver by an antihyperglycemic agent. Metabolism 44: 384-389, 1995
Hollenbeck, C. and Reaven, G.M. Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. J. Clin. Endocrinol. Metab. 64: 1169-1173, 1987
Holstad, M. and Sandler, S. Prolactin protects against diabetes induced by multiple low doses of streptozotocin in mice. J. Endocrinol. 163:229-234, 1999
James, D.E., Strube, M. and Mueckler, M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338: 83-87, 1989
Kahn, B.B., Charron, M.J., Lodish, H.F., Cushman, S.W. and Flier, J.S. Differential regulation of two glucose transporters in adipose cells from diabetic and insulin-treated diabetic rats. J. Clin. Invest. 84: 404-411, 1989
Keen, H. What’s in a name? IDDM/NIDDM, type1/type2. Diabetic Med. 3: 11-12, 1986
Klip, A., Logan, W.J. and Li, G. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochem. Biophys. Acta. 687: 265-280, 1982
Klip, A. and Paquet, M.R. Glucose transport and glucose transporters in muscles and their metabolic regulation. Diabetes Care 13: 228-243, 1990
Koenig, J.I., Meltzer, H.Y., Devane, G.D. and Gudelsky, G.A. The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology 118: 2534-2539, 1986
Krieger, D.T. Brain peptides: what, where and why Science 222: 975-985, 1983
Krieger, D.T., Liotta, A.S., Brownstein, M.J. and Zimmerman, E.A. ACTH, -lipoprotein and released peptides in brain, pituitary and bloos. Acta Endocrinol. 104: 85-90, 1980
Law, P.Y., Wong, Y.H. and Loh, H.H. Molecular mechanisms and regulation of opioid receptor signaling. Ann. Rev. Pharmacol. Toxicol. 40: 389-430, 2000
Liu, I.M., Chi, T.C., Chen, Y.C., Lu, F.H. and Cheng, J.T. Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin-induced diabetic rats. Neurosci. Lett. 265: 183-186, 1999a
Liu, I.M., Niu, C.S., Chi, T.C., Kuo, D.H. and Cheng, J.T. Investigations of the mechanism of the reduction of plasma glucose by cold-stress in streptozotocin-induced diabetic rats. Neuroscience. 92: 1137-1142, 1999b
Liu, Q.Y., E. Kappinski and P.K.T. Pang Treatment inhibits both T and L calcium channel currents in ventricular cells. J. Cardiovasc. Pharmacol. 20: 513, 1992
Loh, H.H. and Smith, A.P. Molecular characterization of opioid receptors. Ann. Rev. Pharmacol. Toxicol. 30: 123-147, 1989
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275, 1951
Luo, Y.Y. Determination of catalpol in rehmannia root by high performance liquid chromatography. Chin. Pharm. J. 29:38-40, 1994
Pessin, J.E. and Bell, G.I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Ann. Rev. Physiol. 54: 911-930, 1992
Polak, J.M., Bloom, S.R., Sullivan, S.N., Facer, P. and Pearse, A.G. Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet 1: 972-974, 1977
Portha, B., Levacher, C., Picon, L. and Rosselin, G. Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes 23: 889-895, 1974
Rahman, W., Dashwood, N.R., Fitzgerald, M., Aynsley-Green, A. and Dickenson, A.H. Postnatal development of multiple opioid receptors in the spinal cord and development of spinal morphine analgesia. Brain Res. 108: 239-254, 1998
Richardson, J.M., Balon, T.W., Treadway, J.L. and Pessin, J.E. Differential regulation of glucose transporter activity and expression in red and white skeletal muscle. J. Biol. Chem. 266: 12690-12694, 1991
Rognstad, R. Rate-limiting steps in metabolic pathways. J. Biol. Chem. 254: 1875-1878, 1979
Sivitz, W.I., DeSautel. S.L., Kayano, T., Bell, G.I. and Pessin, J.E. Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340: 72-74, 1989
Spraul, M., Anderson, E.A., Bogardus, C. and Ravussin, E. Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43: 191-196, 1994
Sugaya, A., Sugiyama, T., Yanase, S., Shen, X.X., Minoura, H. and Toyoda N. Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones. Life Sci. 66: 641-648, 1999
Tian, M., Broxmeyer, H.E., Fan, Y., Lai, Z., Zhang, S., Aronica, S., Cooper, S., Bigsby, R.M., Steinmetz, R., Engle, S.J., Mestek, A., Pollock, J.D., Lehman, M.N., Jansen, H.T., Ying, M., Stambrook, P.J., Tischfield, J.A. and Yu, L. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J. Exp. Med. 185: 1517-1522, 1997
Tyler, V.E. Herbs of Choice:The therapeutic use of phytomedicinals., Pharmaceutical Products Press., New York, pp.37-41, 1994
Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W. and Bloom, F. -endorphin and adrenal corticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367-1369, 1977
Vatta, M.S., Presas, M.F., Bianciotti, G., Rodriguez-Fermepin, M., Ambros, R. and Fernandez, B.E. B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18: 1483-1489, 1997
Viveros, O.H., Diliberto, E.J., Hazum, E. and Chang, K.J. Opiate-like materal in the adrenal medulla: evidence for storeage and secretion with catecholamines. Mol. Pharmacol. 16: 1101-1108, 1979
Weidmann, P., Boehlen, L.M. and de Courten, M. Pathogenesis and treatment of hypertension associated with diabetes mellitus. Am. Heart. J. 125: 1498-1513, 1993
Yamada, K., Yamakawa, K. and Terada, Y. Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin-induced diabetic pregnant rats. Horm. Metab. Res. 31: 508-513, 1999
Yang, H.Y., Di Giulio, A.M., Fratta, W., Hong, J.S., Majane, E.A., Costa, E. Enkephalin in bovine adrenal gland: multiple molecular forms of [Met5]-enkephalin immunoreactive peptides. Neuropharmacology 19: 209-215, 1980
Yasuda, K., Raynor, K., Kong, H., Breder, C.D., Takeda, J., Reisine, T. and Bell, G.I. Cloning and functional comparison of and receptors from mouse brain. Proc. Natl. Sci. U.S.A. 90: 6736-6740, 1993
林景彬 常用中藥藥理與應用,中國醫藥學院出版。pp.525-526, 1996
劉怡旻 中藥升麻酸的降血糖作用機轉,成功大學基礎醫學研究所博士論文。pp.100-101, 2001