簡易檢索 / 詳目顯示

研究生: 蔡名修
Tsai, Ming-Shiu
論文名稱: 光腔耦合到波導管的光子輸運動力學
Photonic transport dynamics in a nanocavity coupled to a waveguide
指導教授: 張為民
Zhang, Wei-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 光子晶體光腔波導管延遲格林函數光子傳輸
外文關鍵詞: photonic crystal, cavity, waveguide, retarded Green function, photonic transport
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文,我們使用非平衡態格林函數方法來描述光子在光子網路內的傳輸動力 學。在此,我們考慮用一個控制光腔來耦合波導管作為光子網路的模型。而光腔和波 導管的動力學皆可由凱爾迪西非平衡態格林函數來求得。而精確的格林函數可由解出 丹森方程式而求得。由於所有的物理量,比如:電場、光子數、光子流皆與格林函數 有關,因此精確的格林函數可使得我們能更清楚的分析上述這些物理量,以了解光子 在此系統內傳輸的動力學。

    In this thesis, we use the non-equilibrium Green function method to describe the photonic trans- port dynamics in photonic networks. The photonic network we consider in this thesis is a waveguide side-coupled to a controllable cavity. The dynamics of the cavity and the waveguide are obtained from Keldysh’s non-equilibrium Green functions. We find the exact solution of the Green function by solving the Dyson equation. Owing to all of physical quantities, such as cavity field, cavity intensity, and photon current being determined by the Green function, the exact solution of the Green function makes the analysis of the dynamics of the transport much easier.

    List of Figures . . . . . . .2 1. Introduction . . . . . . .4 1.1 Photonic crystals and Photonic networks . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . 5 2. Phonic Transport . . . . . . .6 3. Analytic Solution of the Retarded Green Function. . .10 3.1 The Integral Kernel in Dyson Equation . . . . . . . . . . . . . . . . . . . . . . . . .10 3.2 The Laplace Transform of Dyson Equation . . . . . . . . . . . . . . . . . . . . . 11 3.3 Branch Cut . . . . . . . . . 14 4. Applications . . . . . . .22 4.1 An external Harmonic Pulse . . . . . . . . . . 24 4.2 An external Gaussian pulse . . . . . . . . . . 27 4.3 The Thermal Effect from the waveguide . . . . . . . . . . . . . . . . . . . . . . . . 37 5 .Conclusion . . . . . . .44 Bibliography . . . . . . .45

    [1] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton, New York, 2008).
    [2] M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
    [3] A. Chakravarty, M. Levy, A.A. Jalali, Z. Wu, Phys. Rev. B 84, 094202 (2011).
    [4] H.G. Park, C.J. Barrelet, Y. Wu, B. Tian, F. Qian, C.M. Lieber, Nature Photon. 2, 622 (2008).
    [5] T. Baba, Nature. Photonics. 2, 465 (2010).
    [6] S. Fan, Appl. Phys. Lett. 80, 908 (2002).
    [7] S. Fan, M.F. Yanik, M. Soljacic. Appl, Phys. Lett. 83, 2739 (2003).
    [8] M. Bayindir, E. Ozbay, Opt. Express. 10, 22 (2002).
    [9] W.B Lin, Z.Q Zhou, C.F Li, and G.C Guo, Phys. Rev. A 84, 055803 (2011).
    [10] H. Chen, C. Y. She, P. Searcy, E. Korevaar, Opt. Lett. 18, 12 (1993).
    [11] J. J. Longdell, E. Fraval, M. J. Sellars, N. B. Manson, Phys. Rev. Lett. 95, 063601 (2005).
    [12] A. Orazio, M. Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, IEEE.Commu. 7, 1 (2008).
    [13] T.Baba, Nature Photon. 1 11 (2007).
    [14] K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Taka- hashi, M. Notomi, Nature Photon 6, 248 (2012).
    [15] A. Lvovsky, C. Barry , Sanders, T. Wolfgang, Nature Photon. 3 (2009).
    [16] C. Clausen, I. Usmani, F. BussiReres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, arXiv:1009.0489v2(2010).
    [17] M. P. Hedges, J. J. Longdell, Y. Li, M. J. Sellars, Nature Lett. 465, 09081 (2010).
    [18] W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, Opt. Express 17, 19356 (2009).
    [19] F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
    [20] J. Ouellette. Appl. Phys. Rev. (2002).
    [21] Y.P. Huang, Joseph B. Altepeter, P. Kumar, Phys. Rev. A 82, 063826 (2010).
    [22] P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, M. Solja, Phys. Rev. A 74, 043818 (2006).
    [23] K.Nozaki1, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, Nature Photon. 4, 477 (2010).
    [24] Z. Li, X. Hu, Y. Zhang, Y. Fu, H. Yang, Appl. Phys. Lett. 99, 141105 (2011).
    [25] Y. Zhang, X. Hu, H. Yang, Q. Gong, Appl. Phys. Lett. 99, 141113 (2011).
    [26] X. Hu, P. Jiang, C. Ding, H. Yang, Q. Gong, Nature Photon. 2 (2008).
    [27] K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Opt. Lett. 29, 3 (2004).
    [28] H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, G. D. Khoe, IEEE. 21, 1 (2003).
    [29] K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Opt. Lett. 29, 3 (2004).
    [30] X.S. Lin, J.H. Yan, Y.B. Zheng, L.J. Wu, S. Lan, Opt. Express. 19, 10 (2011).
    [31] L.V. Hau, S.E.Harris, Z. Dutton, C. H. Behroozi, M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen, Nature. 397, 594 (1999).
    [32] M.H. Wu, C. U. Lei, W.M Zhang, H.N, Opt. Express, 18, 18407 (2010).
    [33] C. U. Lei, W.M Zhang, arXiv:1011.4570v2 (2011).
    [34] S. Longhi, Phys. Rev. A 74, 063826 (2006).
    [35] S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).

    下載圖示 校內:2013-08-15公開
    校外:2013-08-15公開
    QR CODE