| 研究生: |
江柏慶 Chiang, Po-Ching |
|---|---|
| 論文名稱: |
反算設計問題於散熱鰭片之三角翼渦流產生器最佳形狀與擺放位置之研究 An Inverse Design Problem in Estimating the Optimal Positions and Shapes for Delta Winglet Vortex Generators of Heat Sinks |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 拉凡格式法 、渦流產生器 、最佳化設計 |
| 外文關鍵詞: | Levenberg-Marquardt Method, Vortex generators, Optimization design |
| 相關次數: | 點閱:157 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用計算流體力學軟體CFD-ACE+建立三角翼渦流產生器與散熱鰭片之三維模型,配合拉凡格式法(Levenberg-Marquardt Method)以降低散熱鰭片之底板平均溫度為目的來反算出三角翼渦流產生器最佳化之形狀及擺放位置。
本論文分別使用平板型與柱型散熱鰭片作為散熱片模型,分析不同鰭片與不同風速下最佳化三角翼渦流產生器結果的差異,Case 1為使用平板型散熱鰭片探討在入口風速=1.2 m/s、1.8 m/s及2.4 m/s時的渦流產生器最佳化結果,Case 2為使用柱型散熱鰭片探討在入口風速=1.2 m/s、1.8 m/s及2.4 m/s時的渦流產生器最佳化結果,兩種案例皆以降低散熱鰭片之底板平均溫度為目標,並最佳化渦流產生器在不同入口速度下的擺放位置及形狀。最後本論文利用實驗驗證模擬的準確性,使用紅外線熱像儀量測實體散熱模型的表面溫度,並與數值模擬結果比對,以確定模擬結果的可靠性。
A three-dimensional inverse design problem is examined in this thesis using a general purpose commercial code (CFD-ACE+) and the Levenberg-Marquardt Method (LMM) to estimate the optimal positions and shapes for delta winglet vortex generators of heat sinks with different design variables.
The objective of this thesis is to minimize the average temperature on the base plate of heat sinks and to obtain the optimal positions and shapes for delta winglet vortex generators of heat sinks. The study consists of two cases. In case 1, Delta winglet vortex generators are used on a plate-fin heat sink to estimate the optimization design when the inlet velocity equal to 1.2, 1.8 and 2.4 m/s, respectively. In case 2, Delta winglet vortex generators are used on a pin-fin heat sink to estimate the optimization design when the inlet velocity equal to 1.2, 1.8 and 2.4 m/s, respectively.
Finally, these heat sink and vortex generators modules are carried on the experimental verification. The results of temperature distributions are very similar between the experimental and numerical data.
1. Huang, C. H., Lu, J. J., and Ay, H., “A three-dimensional heat sink module design algorithm with experimental verification”, International Journal of Heat and Mass Transfer, Vol.54, pp. 1482–1492, 2011
2. Marquardt, D.M., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., Vol. 11, pp. 431–441, 1963
3. CFD-RC user’s manual, ESI-CFD Inc., 2005.
4. Fiebig, M., Kallweit, P., Mitra, N., and Tiggelbeck, S., “Heat Transfer Enhancement and Drag by Longitudinal Vortex Generator in Channel Flow”, Experimental Thermal and Fluid Science, Vol. 4, No. 1, pp. 103-114, 1991.
5. Torri, K., Kwak, K. M., and Nishino, K., “Heat Transfer Enhancement Accompanying Pressure-Loss Reduction with Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, Vol. 45, No. 18, pp. 3795-3801, 2002.
6. Pesteei, S. M., Subbarao, P. M. V., and Agarwal, R. S., “Experimental Study of The Effect of Winglet Location on Heat Transfer Enhancement and Pressure Drop in Fin–Tube Heat Exchangers”, Applied Thermal Engineering, Vol. 25, No. 11-12, pp. 1684–1696, 2005.
7. Chu, P., He, Y. L., Lei, Y. G., Tian, L. T., and Li, R., “Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger with Longitudinal Vortex Generators”, Applied Thermal Engineering, Vol.29, No. 5- 6, pp. 859-876, 2009.
8. Tian, L. T., He, Y. L., Lei, Y. G., and Tao, W. Q., “Numerical Study of Fluid Flow and Heat Transfer in a Flat-Plate Channel with Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis”, International Communications in Heat and Mass Transfer, Vol. 36, No. 2, pp. 111-120, 2009.
9. Li, H. Y., and Chao, S. M., “Measurement of Performance of Plate-Fin Heat Sinks with Cross Flow Cooling”, International Journal of Heat and Mass Transfer, Vol 52, No. 13-14, pp. 2949-2955, 2009
10. Li, H. Y., Chiang, M. H., Lee, C. I., and Yang, W. J., “Thermal Performance of Plate - Fin Vapor Chamber Heat Sinks”, International Communications in Heat and Mass Transfer, Vol. 37, No. 7, pp. 731-738, 2010.
11. Min, C., Qi, C., Kong, X., and Dong, J., “Experimental Study of Rectangular Channel with Modified Rectangular Longitudinal Vortex Generators”, International Journal of Heat and Mass Transfer, Vol. 53, No. 15-16, pp. 3023-3029, 2010.
12. Yang, K. S., Li, S. L., Youn, C. I., Chien, K. H., Hu, R., and Wang, C. C., “An Experimental Investigation of Air Cooling Thermal Module Using Various Enhancements at Low Reynolds Number Region”, International Journal of Heat and Mass Transfer ,Vol. 53 , No. 25- 26 , pp. 5675 - 5681 , 2010.
13. Henze, M., von Wolfersdorf, J., Weigand, B., Dietz, C. F., and Neumann, S. O., “Flow and Heat Transfer Characteristics Behind Vortex Generators – A Benchmark Dataset”, International Journal of Heat and Fluid Flow , Vol. 2, No.1 , pp. 318-328, 2011.
14. Aris, M. S., McGlen, R., Owen, I., and Sutcliffe, C. J., “An Experimental Investigation into the Deployment of 3-D, Finned Wing and Shape Memory Alloy Vortex Generators in a Forced Air Convection Heat Pipe Fin Stack”, Applied Thermal Engineering , Vol. 1, No. 14–15, pp. 2230–2240, 2011.
15. Ahmed, H. E., Mohammed, H. A., and Yusoff, M. Z., “An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids : Approaches and Applications”, Renewable and Sustainable Energy Reviews, Vol.16 ,No. 8 , pp. 5951–5993, 012.
16. Sinha, A., Raman, K. A., Chattopadhyay, H., and Biswas, G., “Effects of Different Orientations of Winglet Arrays on the Performance of Plate-Fin Heat Exchangers”, International Journal of Heat and Mass Transfer ,Vol. 57, No. 1 , pp. 202–214, 2013.
17. Li, H. Y., Chen, C. L., Chao, G. F., “Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators”, , 2013.
18. Li, H. Y., and Liao, W. R., “Application of Vortex Generators to Heat Transfer Enhancement of Pin-Fin Heat Sinks”, International Journal of Heat and Mass Transfer , 2013.