簡易檢索 / 詳目顯示

研究生: 余昀澔
Yu, Yun-Hao
論文名稱: 主鏈含孤立發光及電子傳遞基團高分子的合成與光電性質
Luminescent Copoly(aryl ether)s Consisting of Alternate Emitting and Electron-Transporting Segments Derivatives: Synthesis and Characterization
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 117
中文關鍵詞: 光電性質孤立發光基團發光二極體
外文關鍵詞: electron-transporting segment, emitting segment, PLED
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(Polymer Light Emitting Diode, PLED)利用電激發光的原理,在PLED元件施加一順向偏壓後,電子與電洞分別由陰極與陽極注入,因為外加電場所造成的電位差,使得載子在有機薄膜中移動,進而在發光層中再結合形成電子-電洞對的激子,當此激子釋放能量後回到回基態時,部分能量會以光子的方式放出,使PLED元件發光。為了提高發光效率,必須減少電極與高分子間的能障及平衡電子電洞注入的速率來提高電子與電洞再結合的機率,大部分PLED高分子電洞注入速率大於電子,所以可利用多層結構導入電子傳遞層(Electron Transport Layer, ETL),或是摻混電子傳遞分子,或是利用化學合成改變分子結構,來提升電子注入的能力。
    本研究合成主鏈含孤立發光基團及電子傳遞基團的高分子,在結構上以二苯乙烯衍生物為發光基團,並導入具電子傳遞功能的Oxadiazole基團,利用親核性取代反應合成具芳香醚高分子,使其共軛長度受到控制,並提升電子注入的能力。所合成的高分子P1~P5皆有良好的熱穩定性。利用模式化合物與高分子的比較,P1~P4的螢光光譜皆有能量轉移的現象,使高分子的發光及螢光量子產率皆由發光基團所控制,P1、P2發藍光,P3、P4發藍紫光。利用CV求得其氧化還原起始電位,並求出高分子的HOMO與LUMO能階,導入電子傳遞基團的P1~P4其LUMO能階都有明顯的下降,表示其改善了電子注入的能力。元件方面,比較所合成的高分子P2與摻混元件及雙層元件,將電子傳遞基團以化學方法導入主鏈的高分子P2其元件性質最佳,但由於孤立系統分子主鏈上是非全共軛的結構,使載子在分子鏈上移動較為困難,減少再結合的機率,所以造成元件的亮度並不高。

    PLED have attracted much interest in recent years due to their potential application in large-area flat panel displays. To achieve high EL efficiency, it is necessary to balance the injection rates of opposite charges and decrease the barriers of charge injection from the opposite contacts. To achieve balanced charge injection, metal electrode with low work function and additional electron transporting layer have been widely employed. Besides, introducing electron transporting units in polymer structure can also be employed to balance charge injection.
    In this work, four isolated copolymers including emitting segments (distyrylbenzene derivatives) and electron-transporting segments (1,3,4-oxadiazole derivatives) were synthesized and characterized. The ether spacers limited the π-conjugation length to allow the polymers to emit the fixed light color. The emission and the PL quantum yield of the polymers were dominated by the fluorophores with longer emissive wavelength via energy transfer from electron-transporting segments. The HOM and LUMO energy levels of these polymers have been estimated from their cyclic voltammograms. The electron affinity can be enhanced by introducing isolated electron-transporting segments that lead to charges injection balance. In single layer LED devices [Al/polymers (P1~P5)/ITO glass], incorporation of bis-oxadiazole unit increases the electron affinity and reduces the turn-on electric field better than one oxadiazole unit and the optoelectronic properties were better than P5 without electron-transporting segment. Moreover, incorporation of electron transporting segment in P2 leads to better optoelectronic properties than other methods such as blending and double layer devices.

    中文摘要........................................Ⅰ 英文摘要........................................Ⅱ 誌 謝........................................Ⅲ 目 錄........................................Ⅳ 流程目錄........................................Ⅷ 表目錄..........................................Ⅸ 圖目錄...........................................X 第一章 緒論 1-1 前言........................................1 1-2 理論基礎....................................2 1-2-1 共軛導電高分子的特性...................2 1-2-2 螢光原理...............................3 1-3 PLED發光原理與元件結構......................5 1-3-1 發光原理...............................5 1-3-2 元件結構...............................6 1-3-3 發光效率...............................9 1-4有機發光二極體技術發展......................10 1-4-1 發光二極體材料的發展..................10 1-4-2 高分子系統 v.s. 小分子系統............11 1-4-3全彩化技術.............................12 1-5有機發光二極體未來展望......................13 第二章 文獻回顧 2-1 PLED的聚合方法.............................13 2-2 PLED高分子的設計...........................17 2-2-1 高分子調色技術........................17 2-2-2 高分子性質的改善......................20 2-2-3 PLED高分子的系統......................22 2-3 螢光的能量轉移.............................23 2-4 研究動機...................................24 第三章 實驗部份 3-1實驗裝置與設備..............................26 3-2鑑定儀器....................................26 3-3物性及光電特性測量儀器......................27 3-4藥品及材料..................................31 3-5合成步驟與結果..............................34 3-5-1雙氟單體3、11的合成....................34 3-5-2 二苯乙烯單體22、23的合成..............36 3-5-3模式化合物M3、M4的合成.................41 3-5-4 高分子P1~P5的合成.....................42 3-6 聚合反應原理...............................44 3-6-1有機金屬觸媒...........................44 3-6-2 Heck Reaction.........................45 3-6-3聚芳香醚的合成.........................46 3-7 相對量子產率...............................47 3-8 循環伏安法.................................47 3-9 元件製作...................................49 3-9-1 ITO導電玻璃的切割與清洗...............49 3-9-2高分子發光膜的製作.....................50 3-9-3 陰極蒸鍍..............................50 3-9-4元件量測...............................51 第四章 結果與討論 4-1 單體結構之鑑定.............................53 4-2 高分子結構鑑定.............................56 4-3 高分子黏度及分子量的測定...................57 4-4 溶解度測試.................................57 4-5 高分子熱性質分析...........................58 4-5-1熱重分析...............................58 4-5-2微差式掃描熱卡計.......................59 4-6 光學性質...................................59 4-6-1 UV/Vis 吸收光譜.......................59 4-6-2螢光光譜分析...........................60 4-6-3高分子內的能量轉移.....................61 4-6-4 相對量子產率..........................62 4-7電化學性質探討..............................63 4-8高分子發光二極體(PLED)的元件特性............65 4-8-1電流密度(I)-電場(F)-亮度(L)特性........65 4-8-2 電激發光光............................68 第五章 結論....................................69 參考文獻......................................114 著作目錄......................................117 自述..........................................118

    [1] M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [2] C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    [3] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature, 374, 539 (1990).
    [4] 郭昭輝;塑膠資訊雜誌,民國91年10月.
    [5] D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988.
    [6] N. J. Turro, Modern Molecular Photochemistry, Mill Valley, University Science Books, California, 1991.
    [7] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing, 1997.
    [8] 翁文國;工業材料雜誌,第156期,P.75,民國88年12月.
    [9] G. Hadziioannou, P. F. van Hutten, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, 1999.
    [10] 郎長齡, 諸柏仁;化工雜誌,第四卷第44期,P.67,1997.
    [11] 楊素華;光訊雜誌,第98期,P.29,2002年10月.
    [12] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494, 2001.
    [13] 陳壽安,彭剛勇;光訊雜誌,第95期,P.25,2002年4月.
    [14] 柯崇文, Chemistry, 60, 95 (2002).
    [15] 林顯光;工業材料雜誌,183期,P.169,民國91年3月.
    [16] 王心心,蔡玲美,張信貞;化工資訊雜誌,P.12,2002年5月.
    [17] R. F. Heck, Accounts of Chemical Research, 12, 146 (1979).
    [18] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26, 5281 (1993).
    [19] R. A. Wessling, J. Polym. Sci., Polym. Symp., 72, 55 (1985).
    [20] F. Louwet, D. Vanderzande, J. Gelan, Synth. Met., 52, 125 (1992).
    [21] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
    [22] Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
    [23] R. G. Sun, Y. Z. Wang, D. K. Wang, Q. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. lett., 76, 634 (2000).
    [24] 趙慶勳,郭耀興,段啟聖:化工資訊雜誌,P.18,2002年5月.
    [25] Z. K. Chen, H. Meng, Y. H. Lai, W. Huang, Macromolecules, 32, 4351 (1999).
    [26] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
    [27] A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Adv. Mater., 9, 1174 (1997).
    [28] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
    [29] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
    [30] A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew : Chem. Int. Ed., 37, 402 (1998).
    [31] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy,
    Kluwer Academic/Plenum Publishers, New York, 1999, p368.
    [32] A. A. Lamola, N. J. Turro, Energy Transfer and Organic
    Photochemistry, Wiley & Sons, New York, 1969.
    [33] A. Heller, J. Chem. Phy., 40, 2839 (1964).
    [34] D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, E. Steinhuber, J. Phys. Chem. B, 102, 1902 (1998).
    [35] R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, C. N. Merriam, J. Polym. Sci. PartA-1, 5, 2375 (1967).
    [36] H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, H. Bassler, Adv. Mater., 4, 661 (1992).
    [37] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
    [38] 楊豐瑜;化工資訊,第三期,P.18,2002.
    [39] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).
    [40] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)
    [41] J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994)。
    [42] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
    [43] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    [44] Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    [45] R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, B. R. Hsieh, J. Phys. Chem. A, 103, 2394 (1999).
    [46] 黃孝文,”主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質”, 國立成功大學化學工程研究所博士論文,民國90年.
    [47] 陳信宏,”主鏈含孤立發光基團及對四聯苯高分子的合成與光電性質”, 國立成功大學化學工程研究所碩士論文,民國90年.
    [48] H. M. McConnell, J. Chem. Phys., 35, 508 (1961).
    [49] M. D. Todd, A. Nitzan, M. A. Ratner, J. Phys. Chem., 97, 29 (1993).
    [50] 廖麒貴,”主鏈含孤立發光基及噁二唑基高分子的合成及電化學性質”, 國立成功大學化學工程研究所碩士論文,民國89年.

    下載圖示 校內:2004-06-18公開
    校外:2005-06-18公開
    QR CODE