| 研究生: |
康金瑋 Kang, Chin-Wei |
|---|---|
| 論文名稱: |
福衛二號衛星影像紋理分析之地質製圖應用--以和平地區為例 Texture Analysis of Formosat-2 image in Hopin Area:An Application in geological mapping |
| 指導教授: |
林慶偉
Lin, Ching-Weei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 影像 、衛星 |
| 外文關鍵詞: | Formosat-2, Texture |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中央山脈地勢高聳,交通不便,若要進行傳統地質調查較為困難,故岩性分佈的資料貧乏,而且台灣氣候溫暖潮濕,使得中央山脈植被覆蓋濃密,故從衛星影像中所能提取到的資訊有限。本研究目的在在於利用福衛二號全色態影像分析紋理資訊,找出該區域的紋理與岩性之間的關係。
本研究的方法是利用衛星影像,分析影像中的紋理資訊。紋理分析的方法是採用Haralick等人於1973年所提出的Gray Level Co-Occurrence Matrix (GLCM),透過此方法以達到描述影像灰階值的幾何分布情形之目的。利用前人的地質資料與分類後的紋理單元的空間分布特性比對結果發現,利用紋理判釋岩性的結果取決於 (1)萃取紋理的能力(2)一致且客觀的標準(3)不同尺度標準之分析結果;在各種分類法的結果中,可以得知在進行岩性紋理判識時,分類的法則並不能有效選取出不同岩性的特徵紋理,表示岩性與紋理的關係並非一對一,而為多對多的形式;傳統分類法為最小之尺度,需在往上建構出更大的紋理,而此方式為利用地形兩側坡面之紋理來解釋岩體,藉由紋理之間的比對、組合及延伸,解釋可能的岩性分布。
本研究工作方法可合理初步判釋地質資訊不明區域之地質分布趨勢之界線,影像整體初判結果可提供野外工作者進行調查時尋找可能岩性界線分佈,而無法單由影像分析方法確定地層岩性分佈界線,應與野外調查工作同步進行,藉由野外資料增加判釋界線之合理性。
Due to great topographic relief and inconvenient in transportation, field mapping is very difficult in the Center Mountain Range, Taiwan. There are only a few 1:50000 geological maps in Central mountain Range available at present. In addition, intensive vegetation in the mountainous area also prohibits us to get enough geological information from optical spectrum data of satellite images. Therefore, this study tries to use the texture characters of FORMOSAT-2 image to identify the lithology of Central Mountain Range in Hopin area.
The Gray Level Co-Occurrence Matrix (GLCM) proposed by Haralick etc. in 1973 is used in this study to extract the texture information of the image. Comparing the geological information with the texture unit classified from the image, the lithology recognition ability depends on our ability to extracting texture information, and the scale of extracting texture.
The study results show the texture characters can be used to help identify the lithology in mountainous area. However, without ground truth information, it is difficult to determine the boundary of lithological units by using texture information only.
小笠原美津雄,大南澳十萬分之一地質圖幅,台灣總督府殖產局,第二
號,1933。
小笠原美津雄,研海十萬分之一地質圖幅,。台灣總督府殖產局,第四號,1936。
林榮章,都會區多解像力遙測影像之紋理分析,國立中興大學土木工程學系碩士論文,1999。
郭永隆,多尺度的紋路分類及分割系統,國立成功大學資訊工程研究所碩士論文,1994。
陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳政恆、楊昭男、李元希,五十萬分之一台灣地質圖,經濟部中央地質調查所,2000。
戴文彬,自組紋理辨識技術在遙測影像處理之應用,行政院國家科學委員會補助專題研究計畫成果報告,2001。
蔡敏之,應用輔助資訊及類神經網路於遙測影像土地利用分類之研究-以識別都市區為例,國立成功大學測量工程研究所碩士論文,1997。
Anys, H., Bannari, A., HE, D. C., and Morin, D., Texture analysis for the mapping of urban areas using airborne MEIS-II images. First International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, 11–15 September, (Ann Arbor, MI: ERIM), 622-629, 1994.
Barber, D.G., and E.F. LeDrew, SAR Sea Ice Discrimination Using Texture Statistics: A Multivariate Approach Photogrammetric Engineering & Remote sensing, vol. 57, No. 4, 385-395, 1991.
Berberoglu, S., Lloyd, C. D., Atkinson, P. M., and Curran, P. J., The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Computers and Geosciences, vol. 26, 385-396, 2000.
Chica-Olmo, M., and Abarca-Hernaandez, F., Computing geostatistical image texture for remotely sensed data classification. Computers and Geosciences, vol. 26, 373-383, 2000.
Cohen, W.B., T.A. Spies, and G.A. Bradshaw, Semivariograms of DigitalImagery for Analysis of Conifer Canopy Structure, Remote Sensing Environment, vol. 34, 167-178, 1990.
Conners, R.W., and C.A. Harlow, A Theoretical Comparison of Texture Algorithms, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-2, No. 3, 204-222, 1980.
Conners, R. W., M. M. Trivedi, and C. A. Harlow., Segmentation of a high-resolution urban scene using texture operators. Computer Vision, Graphics and Image Proc. vol. 25, 273-310, 1984.
Desjardins, L., Techniques in photogeology. Bulletin of the American Association of Petroleumm Geologists, vol. 34, December, 1950.
Dong, P., and Leblon, B., Rock unit discrimination on Landsat TM, SIR-C and Radarsat images using spectral and textural information, International Journal of Remote Sensing, vol. 25, no. 18, 3745-3768, 2004.
Du Buf, J.M.H., M. Kardan, and M. Spann,” Texture Feature Performance for Image Segmentation”, Pattern Recogn., vol. 23, 291-309, 1990.
Franklin, S. E., and Peddle, D. R., Classification of SPOT HRV imagery and texture features. International Journal of Remote Sensing, vol. 11, 551-556, 1990.
Franklin, S. E., and Peddle, D. R., Spectral texture for improving class discrimination in complex terrain. International Journal of Remote Sensing, vol. 10, 1437-1443, 1989.
Galloway, M. M., Texture Analysis Using Gray Level Run Lengths, Computer Graphics and Image Processing, vol. 4, 172-179, 1975.
Gong, P., Marceau, D. J., and Howarth P. J., A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, vol. 40, 137-151, 1992.
Greenbaum, D., Lithological discrimination of center Snowdonia using airborne multispectral scanner imagery. International Journal of Remote Sensing, vol. 8, 799-816, 1987.
Haralick, R. M., and Shanmugam, K., Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics, vol. 3, 610-621, 1973.
Haralick, R. M., and Shanmugam, K., Combined spectral and spatial processing of ERTS imagery. Remote Sensing of Environment, vol. 3, 3-13, 1974.
Hay, G. J., K.O. Niemann, and G.F. Mclean, An Object-Specific Image-Texture Analysis of H-Resolution Forest Imagery, Remote Sens. Environ., vol. 55, 108-122, 1996.
Kahle, A. B., and Goetz, A. F. H., Mineralogic information from a new airborne thermal infrared multispectral scanner. Science, New York, vol. 222, 24-27, 1983.
Kurvonen, L., and Hallikainen, M. T., Textural information of multitemporal ERS-1 and JERS-1 SAR images with applications to land and forest type classification in boreal zone. IEEE Transactions on Geoscience and Remote Sensing, vol. 37, 680-689, 1999.
Marceau, D. J., Howarth, P. J., Dubois, J. M. M., and Gratton, D. J., Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing, vol. 28, 513-518, 1990.
Mather, P. M., Tso, B., and Koch, M., An evaluation of Landsat TM spectral data and SAR-derived textural information for lithological discrimination in the Red-Sea Hills, Sudan. International Journal of Remote Sensing, vol. 19, 587-604, 1998.
Melton, F. A., Preliminary observations on geological use of aerial photographs. Bulletin of American Association of Petroleum on geological, vol. 29, 1756-1765, 1945.
Miller, V. G., Photogeology (New York: McGraw-Hill), 1961.
Nowhuys, J. J. van, Geological interpretation of aerial photographs. Transactions of American Institute of Mining and Metallurgy Engineers, vol. 126, 607-624, 1937.
Nystuen, J.A., and F.W. Garcia, “Sea Ice Classification Using SAR Backscatter Statistics”, IEEE Transactions on Geoscience and Remote Sensing, vol. 30, No. 3, 502-509, 1992.
Ohanian P. P., R. C. Dubes, “Performance Evaluation for Four Classes of Textural Features” , Pattern Recogn., vol. 25, 819-833, 1992.
Paul, M., An evaluation of Landsat TM spectral data and SAR-derived textural information for lithological discrimination in the Red Sea Hills, Sudan, International Journal of Remote Sensing, vol. 19, no. 4, 587- 604, 1998.
Pultz, T.J., and R.J. Brown, “SAR Image Classification of Agricultural Targets Using First- and Second-Order Statistics” Canadian Journal of Remote Sensing, vol. 13, No. 12, 85-91, 1987.
Sabins, F. F. Jr, Remote Sensing Principles and Interpretation, 2nd edn (New York: Freeman), 1987.
Ulaby, F. T., Kouyate, F., Brisco, B., and Williams, T. H. L., Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing, vol. 24, 235-245, 1986.
Vandermeer, F., Spectral mixture modeling and spectral stratigraphy in carbonate lithofacies mapping. ISPRS Joural of Photogrammetry and Remote Sensing, vol. 51, 150-162, 1996.
Weszka, J., Dyer, C., and Rosenfeld, A., A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, 269-285, 1976.