| 研究生: |
謝坤庭 Hsieh, Kun-Ting |
|---|---|
| 論文名稱: |
表面起始聚合疏水性高分子與四級銨鹽修飾於棉纖維表面之表面特性及其抗菌與防污之研究 Surface modification of cotton cellulose substrates by hydrophobic polymer with quaternary ammonium functionality: Surface characterization, antibacterial and antistain evaluation |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 棉纖維 、表面改質 、四級銨鹽 、疏水性 、殺菌 、抗菌貼附 、防污 |
| 外文關鍵詞: | quaternary ammonium salt, hydrophobicity, bactericidal, antimicrobial adhesion, anti-stain |
| 相關次數: | 點閱:46 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代人逐漸重視健康,除了飲食選擇謹慎外,對抗病菌也成為一門顯學,這股趨勢下許多具有抗菌的產品也逐漸推出。由於抗菌的需求,抗菌材料越來越受到重視,而一個理想的纖維,除了基本的保暖外,也必須具有抗菌、防水、防污等多功能性質。
在此選擇棉織物作為基材,於棉纖維表面固定鏈轉移劑,後續透過表面起始可逆加成斷裂鏈轉移聚合引入疏水性單體2,2,2-Trifluoroethyl methacrylate (TFEMA)和具有抗菌能力的四級銨鹽quaternary ammonium salts 2-(Dimethylamino)ethyl methacrylate (DMAEMA+)並建構出具防水、防污、殺菌及抗菌貼附的表面。透過掃描式電子顯微鏡(SEM)、X射線光電子能譜學(XPS)和接觸角測量(WCA)觀察其表面型態、表面鍵結、表面元素組成、表面親疏水性、改質層穩定性,再分別以防污實驗、殺菌實驗及細菌貼附實驗來觀察其效果。
綜合各實驗結果分析可以確定成功於棉纖維上改質,表面性質都有觀察到明顯的變化,包括表面的型態、鍵結的改變、元素組成的比例,且表面形成接近超疏水的型態,對於防污也有顯著的效果,後續殺菌及抗菌貼附也可以發現改質過後的表面與未改質的表面相比,殺菌率上升,細菌貼附量下降,成功製備出具有抗菌、防污多功能性棉纖維。
Modern people gradually pay attention to their health. In addition to careful choice of diet, antibacterial has become a knowledge. Due to the demand for antibacterial, antibacterial materials have draw more and more attention, and an ideal fiber, in addition to basic warmth, must also have antibacterial, waterproof, antistain and other multifunctional properties.
Here, the cotton fabric is selected as the substrate, the chain transfer agent is fixed on the surface of the cotton fiber, and the hydrophobic monomer 2,2,2-Trifluoroethyl methacrylate (TFEMA) and the antibacterial ability quaternary ammonium salt 2-(Dimethylamino)ethyl methacrylate (DMAEMA ) were polymerized from cellulos cotton fiber via reversible addition-fragmentation chain transfer (RAFT) polymerization to provide a surface that is waterproof, stain-resistant, bactericidal and antibacterial adhesion. The surface characterization was analyzed by SEM, XPS and WCA. Furthermore, the bactericidal effect and antibacterial adhesion effect were examined by antimicrobial test.
According to the results, the surface characterization including element composition, bonding and hydrophobicity was changed after grafting TFEMA and DMAEMA .
It could be noticed that the amounts of bacteria adhesion reduced dramatically after modification. The treated cotton fiber possessed sufficient antibacterial properties against Staphylococcus aureus and Escherichia coli.
Thus, the modification was successful and the surface had a great antibacterial and antistain effect.
1. Flandroy, L., et al., The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ, 2018. 627: p. 1018-1038.
2. Cheng, G., et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007. 28(29): p. 4192-9.
3. Shateri Khalil-Abad, M. and M.E. Yazdanshenas, Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci, 2010. 351(1): p. 293-8.
4. Page, K., M. Wilson, and I.P. Parkin, Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 2009. 19(23): p. 3819.
5. Neufeld, B.H., et al., Metal-Organic Framework Material Inhibits Biofilm Formation of Pseudomonas aeruginosa. Advanced Functional Materials, 2017. 27(34): p. 1702255.
6. Espirito Santo, C., et al., Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol, 2011. 77(3): p. 794-802.
7. Rana, D. and T. Matsuura, Surface modifications for antifouling membranes. Chem Rev, 2010. 110(4): p. 2448-71.
8. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal, 2014. 46(8): p. 436.
9. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
10. Cortese, B., et al., A brief review of surface-functionalized cotton fabrics. Surface Innovations, 2013. 1(3): p. 140-156.
11. Sawhney, A.P.S., et al., Modern Applications of Nanotechnology in Textiles. Textile Research Journal, 2008. 78(8): p. 731-739.
12. Jindasuwan, S., et al., Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating. Applied Surface Science, 2013. 275: p. 239-243.
13. Drelich, J., et al., Hydrophilic and superhydrophilic surfaces and materials. Soft Matter, 2011. 7(21): p. 9804.
14. Yan, Y.Y., N. Gao, and W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci, 2011. 169(2): p. 80-105.
15. Stamm, M., Polymer surfaces and interfaces. Characterization, Modification and Applications; Springer: Berlin, Germany, 2008.
16. Mavis, B. and A.C. Taş, Dip coating of calcium hydroxyapatite on Ti‐6Al‐4V substrates. Journal of the American Ceramic Society, 2000. 83(4): p. 989-991.
17. Li, D., et al., Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer chemistry, 2014. 5(1): p. 14-24.
18. Schlaich, C., et al., Mussel-Inspired Polymer-Based Universal Spray Coating for Surface Modification: Fast Fabrication of Antibacterial and Superhydrophobic Surface Coatings. Advanced Materials Interfaces, 2018. 5(5): p. 1701254.
19. Pandiyaraj, K.N., et al., Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties. Applied Surface Science, 2015. 347: p. 336-346.
20. Irie, H., et al., Efficient visible light-sensitive photocatalysts: grafting Cu (II) ions onto TiO2 and WO3 photocatalysts. Chemical Physics Letters, 2008. 457(1-3): p. 202-205.
21. Li, R., et al., Gamma-ray co-irradiation induced graft polymerization of NVP and SSS onto polypropylene non-woven fabric and its blood compatibility. Radiation Physics and Chemistry, 2013. 91: p. 132-137.
22. Adden, N., et al., Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir, 2006. 22(19): p. 8197-8204.
23. Wang, B., et al., Copolymer Brushes with Temperature-Triggered, Reversibly Switchable Bactericidal and Antifouling Properties for Biomaterial Surfaces. ACS Appl Mater Interfaces, 2016. 8(40): p. 27207-27217.
24. Rai, M., A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 2009. 27(1): p. 76-83.
25. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 2000. 52(4): p. 662-668.
26. Marambio-Jones, C. and E.M. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010. 12(5): p. 1531-1551.
27. Ip, M., et al., Antimicrobial activities of silver dressings: an in vitro comparison. Journal of medical microbiology, 2006. 55(1): p. 59-63.
28. Burd, A., et al., A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound repair and regeneration, 2007. 15(1): p. 94-104.
29. Gorenšek, M. and P. Recelj, Nanosilver functionalized cotton fabric. Textile Research Journal, 2007. 77(3): p. 138-141.
30. Liu, Q., et al., Thermal, Waterproof, Breathable, and Antibacterial Cloth with a Nanoporous Structure. ACS Appl Mater Interfaces, 2018. 10(2): p. 2026-2032.
31. Kovacic, P., M.K. Lowery, and K.W. Field, Chemistry of N-bromamines and N-chloramines. Chemical Reviews, 1970. 70(6): p. 639-665.
32. Kocer, H.B., Synthesis, Structure-Bioactivity Relationship, and Application of Antimicrobial Materials. 2009.
33. Latch, D.E., et al., Photochemical conversion of triclosan to 2, 8-dichlorodibenzo-p-dioxin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 158(1): p. 63-66.
34. Ren, X., et al., Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 711-716.
35. Akdag, A., et al., The stabilities of N− Cl bonds in biocidal materials. Journal of Chemical Theory and Computation, 2006. 2(3): p. 879-884.
36. Barnela, S., S. Worley, and D. Williams, Syntheses and antibacterial activity of new N-halamine compounds. Journal of pharmaceutical sciences, 1987. 76(3): p. 245-247.
37. Williams, D., E. Elder, and S. Worley, Is free halogen necessary for disinfection? Appl. Environ. Microbiol., 1988. 54(10): p. 2583-2585.
38. Mauger, R.P. and F. Soper, 18. Acid catalysis in the formation of chloroamides from hypochlorous acid. N-chlorination by hypochlorite ions and by acyl hypochlorites. Journal of the Chemical Society (Resumed), 1946: p. 71-75.
39. Šakić, D., et al., Chlorination of N-methylacetamide and amide-containing pharmaceuticals. Quantum-chemical study of the reaction mechanism. The Journal of Physical Chemistry A, 2014. 118(12): p. 2367-2376.
40. Ma, K., et al., N-halamine modified polyester fabrics: Preparation and biocidal functions. Fibers and Polymers, 2014. 15(11): p. 2340-2344.
41. Cerkez, I., et al., N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir, 2011. 27(7): p. 4091-4097.
42. Liu, Y., et al., Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate. Journal of Materials Chemistry B, 2015. 3(7): p. 1446-1454.
43. Fan, X., et al., Cytocompatible antibacterial fibrous membranes based on poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer. RSC Advances, 2016. 6(48): p. 42600-42610.
44. Cerkez, I., et al., N-halamine copolymers for biocidal coatings. Reactive and Functional Polymers, 2012. 72(10): p. 673-679.
45. Allan, C.R. and L.A. Hadwiger, The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental mycology, 1979. 3(3): p. 285-287.
46. Wikipedia contributors. Chitosan. 5 June 2019 05:03 UTC 5 July 2019 06:58 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Chitosan&oldid=900362877.
47. Hosseinnejad, M. and S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. International journal of biological macromolecules, 2016. 85: p. 467-475.
48. Kong, M., et al., Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology, 2010. 144(1): p. 51-63.
49. Roy, D., et al., Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules, 2007. 9(1): p. 91-99.
50. Gilbert, P. and L. Moore, Cationic antiseptics: diversity of action under a common epithet. Journal of applied microbiology, 2005. 99(4): p. 703-715.
51. Chen, X., et al., Preparation, characterization, and antibacterial activities of quaternarized N‐halamine‐grafted cellulose fibers. Journal of Applied Polymer Science, 2015. 132(43).
52. Yoshikawa, C., et al., Protein repellency of well-defined, concentrated poly (2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules, 2006. 39(6): p. 2284-2290.
53. Jeong, S.P., et al., Polymeric Functionalization of Cyclic Olefin Copolymer Surfaces with Nonbiofouling Poly (oligo (Ethylene Glycol) Methacrylate). Asian Journal of Organic Chemistry, 2013. 2(7): p. 568-571.
54. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polymer Journal, 1990. 22(5): p. 355.
55. Liu, C., et al., Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environmental science & technology, 2017. 51(4): p. 2161-2169.
56. Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
57. Edalatpour, M., et al., Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation. Applied energy, 2018. 222: p. 967-992.
58. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
59. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.
60. Privett, B.J., et al., Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir, 2011. 27(15): p. 9597-601.
61. Ozkan, E., et al., Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapour deposition. Chem Sci, 2016. 7(8): p. 5126-5131.
62. Hwang, G.B., et al., The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived. ACS Nano, 2018. 12(6): p. 6050-6058.
63. Szwarc, M., M. Levy, and R. Milkovich, Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers1. Journal of the American Chemical Society, 1956. 78(11): p. 2656-2657.
64. Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998. 31(16): p. 5559-5562.
65. Petton, L., et al., From one-pot stabilisation to in situ functionalisation in nitroxide mediated polymerisation: an efficient extension towards atom transfer radical polymerisation. Polymer Chemistry, 2012. 3(7): p. 1867.
66. Wikipedia contributors. Atom transfer radical polymerization. 26 May 2019 21:27 UTC 3 July 2019 21:39 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Atom_transfer_radical_polymerization&oldid=898935863.
67. Wikipedia contributors. Reversible addition−fragmentation chain-transfer polymerization. 7 June 2019 22:44 UTC 3 July 2019 21:46 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Reversible_addition%E2%88%92fragmentation_chain-transfer_polymerization&oldid=900841213.
68. Beija, M., J.-D. Marty, and M. Destarac, RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids. Progress in Polymer Science, 2011. 36(7): p. 845-886.
69. 蔡文城, 微生物學. 1999: 藝軒圖書出版社.
70. Gram Staining : Principle, Procedure, Interpretation and Animation. Available from: https://laboratoryinfo.com/gram-staining-principle-procedure-interpretation-and-animation/.
71. Growth cycles of bacteria.
72. Patel, V.K., et al., (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate)‐and (S)‐2‐(Ethyl isobutyrate)‐(O‐ethyl xanthate)‐mediated RAFT polymerization of vinyl acetate. Journal of Applied Polymer Science, 2012. 125(4): p. 2946-2955.
73. Tastet, D., et al., Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymer as non leaching preservative. Polymer, 2011. 52(3): p. 606-616.
74. Sacher, E., Metallization of polymers 2. 2002: Springer.
75. Huang, K.P., P. Lin, and H.C. Shih, Structures and properties of fluorinated amorphous carbon films. Journal of Applied Physics, 2004. 96(1): p. 354-360.