| 研究生: |
呂俊憲 Lu, Jun-Xian |
|---|---|
| 論文名稱: |
功能梯度壓電半平面之第三型裂縫破壞分析 Fracture Analysis of a Mode Ⅲ Crack in a Half-plane of Functionally Graded Piezoelectric Materials |
| 指導教授: |
陳元方
Chen, Yuan-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 奇異積分方程 、功能 梯度壓電材料 |
| 外文關鍵詞: | singular integral equations, FGPM |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來,功能梯度材料(FGMs)這種新式材料常常被
來設計現代結構,例如感測器、致動器、智慧結構和絕熱塗層。因為功能梯度材料的材料常數在整個結構上平滑連續地變化,使得由於機械力和熱效應所引起的應力集中現象大大地降低。相對地,結構的可靠度自然就提高了。最近,功能梯度材料的觀念延伸到壓電材料,並且受到耦合的彈力場和電場兩者的作用。這個新式材性就被稱作功能梯度壓電材料(FGMPs)。
本論文研究的是一個FGPMs的半平面上第三型非滲透和滲透裂縫的問題。外加兩種邊界條件,自由邊界和固定邊界。藉由使用傅立葉轉換,問題能夠被減化為奇異積分方程,並且利用高斯-謝畢雪夫積分方程求其數值解。隨後,算出來的應力和電位移強度因子顯示一些有影響的因素,例如裂縫長度、裂縫位置、邊界條件和非均質材料參數。最後結果顯示奇異應力場和電場的形式同於均質壓電裂縫問題的相應形式。裂縫端點處的材料強度較高時, 伴隨著強度因子也較高,例如當β> 0。至於滲透性裂縫,應力和電位移強度因子僅和外加的機械力有關。
In the last decade, new composite materials called functionally graded materials(FGMs)are developed to design the modern structures such as sensors, actuators, smart structures,and the thermal barriers.Since the material properties of FGMs vary smoothly and continuously in the body, stress concentrations due to the mechanical and thermal loads can be reduced significantly. Therefore,the reliability of the structures may be improved. Recently,the concept of FGMs has been extended to piezo- electric materials, which couple the elastic and electric fields.These new materials are called the functionally graded piezoelectric materials(FGPMs).
This study deals with the mode Ⅲ impermeable and permeable crack problems in a half-plane of FGPMs.Traction free-electrical open and clamped-electrical closed conditions are assigned on the boundary surface, respectively. By using the Fourier transform,the field equations are reduced to a system of singular integral equations and solved numerically by Gauss-Chebyshev integration technique.The stress and electrical displacement intensity factors are then calculated to show the influential factors such as the crack length,the crack location, the boundary conditions,and the nonhomogeneous material parameter.The intensity factors are higher at the crack tip with stronger material, i.e.β> 0. For permeable crack,the stress and electrical displacement intensity factors depend only on the external me- chanical load.
[1]R. L. Williamson, B. H. Rabin, and J. T. Drake, “Finite Element Analysis of
Thermal Residual Stresses at Graded Ceramic-Metal Interfaces”, part Ⅰ,
Model Description and Geometric Effects, J. Appl. Phys., Vol. 74, pp. 1310-
1320, 1993.
[2]R. L. Williamson and B. H. Rabin, “Numerical Modeling of Residual Stresses
in Ni-Al2O3 Gradient Materials”, Ceramic Trans., Functionally Gradient
Materials, Vol. 34, pp. 55-65, 1993.
[3]A. Kawasaki and R. Watanabe, “Fabrication of Dish-Shaped Functionally
Gradient Materials by Hot Pressing and Their Thermo-mechanical
Performance”, Ceramic Trans., Functionally Gradient Materials, Vol. 34, pp.
157-164, 1993.
[4] Y. Obata and N. Noda, “Steady Thermal Stresses in a Hollow Circular
Cylinder and a Hollow Sphere of a Functionally Gradient Material”, Journal
of Thermal Stresses, Vol. 17, pp. 471-487, 1994.
[5]J.N. Reddy and C.D. Chin, “Thermo-mechanical Analysis of Functionally
Graded Cylinders and Plates”, Journal of Thermal Stresses, Vol. 21, pp. 593-
626, 1998.
[6] J. Y. Kim, S. Y. Kim and Y. S. Kim, “Functionally Gradient Reaction Layers
Produced by the Directed Metal Oxidation Process”, Functionally Graded
Materials: Manufacture, Properties, and Applications, pp. 3-13, 1997.
[7]Y. Miyamoto, “Applications of FGM in Japan”, Functionally Graded
Materials: Manufacture, Properties, and Applications, pp. 171-187, 1997.
[8]F. Delale and F. Erdogan, “The Crack Problem for a Nonhomogeneous Plane”,
Transaction of the ASME, Journal of Applied Mechanics, Vol.
50, pp. 609-614, 1983.
[9] F. Erdogan, “The Crack Problem for Bonded Nonhomogeneous Materials Under
Antiplane Shear Loading”, Transaction of the ASME, Journal of Applied
Mechanics, Vol. 52, pp. 823-828, 1985.
[10] F. Erdogan, A. C. Kaya, and P. F. Joseph, “The Crack Problem in
Bonded Nonhomogeneous Materials”, Transaction of the ASME, Journal of
Applied Mechanics, Vol. 58, pp. 410-418, 1991.
[11]H. J. Choi, “Bonded Dissimilar Strips with a Crack Perpendicular to
the Functionally Graded Interface”, International Journal of Solid and
Structure, Vol. 33, pp. 4101-4117, 1996.
[12]A. M. Asfar and H. Sekine, “Crack Spacing Effect on the Brittle
Fracture Characteristics of Semi-Infinite Functionally Graded Materials
with Periodic Edge Cracks”, International Journal of Fracture Vol. 102,
pp. 61-66, 2000.
[13]X. Zhu, Q. Wang, and Z. Meng, “A Functionally Graded Piezoelectric
Actuator Prepared Metallurgical Process in PNN-PZ-PT System”,
Journal of Materials Science Letters, Vol. 14, pp. 516-518, 1995.
[14]C. C. M. Wu, M. Kahn, and W. Moy, “Piezoelectric Ceramics with
Functional Gradients: A New Application in Material Design”, Journal of
American Ceramics Society, Vol. 79, pp. 809-812, 1996.
[15]C. Li and G. J. Weng, “Antiplane Crack Problem in Functionally Graded
Piezoelectric Materials”, Transactions of the ASME, Journal of Applied
Mechanics, Vol. 69, pp. 481-488, 2002.
[16]B. L. Wang, “A Mode Ⅲ Crack in Functionally Graded Piezoelectric
Materials”, Mechanics Research Communications, Vol. 30, pp. 151 -159,
2003.
[17]S. Ueda, “Crack in Functionally Graded Piezoelectric Strip Bonded to
Elastic Layers Under Electromechanical Loading”, Theoretical and
Applied Fracture Mechanics, Vol. 40, pp. 225-236, 2003.
[18]N. I. Muskhhelishvili, “Singular Integral Equations”, Noordhoff
International Publishing, Groningen, The Netherlands, 1953.
[19]T. J. Rivlin, “The Chebyshev Polynomials”, Wiley, New York, 1974.
[20]F. Frdogan, G. D. Gupta, and T. S. Cook, “Numerical Solution of
Singular Integral Equations”, In: G. C. Sih (Ed.), Mechanics of Fracture
1: Method of Analysis and Solution of Crack Problem, Noordhoff
International Publishing, Leyden, The Netherlands, 1973.
[21]Z. T. Chen and S. W. Yu, “Antiplane Shear Problem for a Crack
Between Two Dissimilar Piezoelectric Materials”, International Journal
of Fracture, Vol. 86, pp. 9-12, 1997.
[22]X. F. Li and X. Y. Duan, “Closed-Form Solution for a Mode Ⅲ Crack at
the Mid-Plane of a Piezoelectric Layer”, Mechanics Research
Communications, Vol. 28, pp. 703-710, 2001.
[23] X. F. Li and G. J. Tang, “Antiplane Permeable Edge Cracks in a
Piezoelectric Strip of Finite Width ”, International Journal of
Fracture, Vol. 118, pp. 45-50, 2002.