簡易檢索 / 詳目顯示

研究生: 呂俊憲
Lu, Jun-Xian
論文名稱: 功能梯度壓電半平面之第三型裂縫破壞分析
Fracture Analysis of a Mode Ⅲ Crack in a Half-plane of Functionally Graded Piezoelectric Materials
指導教授: 陳元方
Chen, Yuan-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 48
中文關鍵詞: 奇異積分方程功能 梯度壓電材料
外文關鍵詞: singular integral equations, FGPM
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來,功能梯度材料(FGMs)這種新式材料常常被
    來設計現代結構,例如感測器、致動器、智慧結構和絕熱塗層。因為功能梯度材料的材料常數在整個結構上平滑連續地變化,使得由於機械力和熱效應所引起的應力集中現象大大地降低。相對地,結構的可靠度自然就提高了。最近,功能梯度材料的觀念延伸到壓電材料,並且受到耦合的彈力場和電場兩者的作用。這個新式材性就被稱作功能梯度壓電材料(FGMPs)。
    本論文研究的是一個FGPMs的半平面上第三型非滲透和滲透裂縫的問題。外加兩種邊界條件,自由邊界和固定邊界。藉由使用傅立葉轉換,問題能夠被減化為奇異積分方程,並且利用高斯-謝畢雪夫積分方程求其數值解。隨後,算出來的應力和電位移強度因子顯示一些有影響的因素,例如裂縫長度、裂縫位置、邊界條件和非均質材料參數。最後結果顯示奇異應力場和電場的形式同於均質壓電裂縫問題的相應形式。裂縫端點處的材料強度較高時, 伴隨著強度因子也較高,例如當β> 0。至於滲透性裂縫,應力和電位移強度因子僅和外加的機械力有關。

    In the last decade, new composite materials called functionally graded materials(FGMs)are developed to design the modern structures such as sensors, actuators, smart structures,and the thermal barriers.Since the material properties of FGMs vary smoothly and continuously in the body, stress concentrations due to the mechanical and thermal loads can be reduced significantly. Therefore,the reliability of the structures may be improved. Recently,the concept of FGMs has been extended to piezo- electric materials, which couple the elastic and electric fields.These new materials are called the functionally graded piezoelectric materials(FGPMs).
    This study deals with the mode Ⅲ impermeable and permeable crack problems in a half-plane of FGPMs.Traction free-electrical open and clamped-electrical closed conditions are assigned on the boundary surface, respectively. By using the Fourier transform,the field equations are reduced to a system of singular integral equations and solved numerically by Gauss-Chebyshev integration technique.The stress and electrical displacement intensity factors are then calculated to show the influential factors such as the crack length,the crack location, the boundary conditions,and the nonhomogeneous material parameter.The intensity factors are higher at the crack tip with stronger material, i.e.β> 0. For permeable crack,the stress and electrical displacement intensity factors depend only on the external me- chanical load.

    中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅱ 誌謝……………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅳ 表目錄…………………………………………………………………..Ⅵ 圖目錄…………………………………………………………………..Ⅶ 符號說明………………………………………………………………..Ⅷ 第一章 緒論…………………………………………………………..1 1.1 前言………………………………………………………….1 1.2 文獻回顧…………………………………………………….2 1.3 研究動機和目的…………………………………………….4 1.4 本文架構…………………………………………………….5 第二章 問題描述與理論分析………………………………………..6 2.1 問題描述…………………………………………………….6 2.2 理論分析………………………………………………….....6 2.2.1 非滲透性裂縫的解析解……………………………….. 11 2.2.1.1 形式A的應力和電位移…………………………...11 2.2.1.2 形式B的應力和電位移…………………………...19 2.2.1.3 型式A的應力和電位移強度因子………………...23 2.2.1.4 型式B的應力和電位移強度因子………………...24 2.2.2 滲透性裂縫的解析解…………………………………..25 第三章 奇異積分方程的數值解……………………………………27 3.1 謝畢雪夫多項式…………………………………………...27 3.2 奇異積分方程解析解和數值解兩者間的轉換…………...29 3.3 非滲透性裂縫的數值解…………………………………...30 3.3.1 型式A的應力和電位移強度因子……….……………30 3.3.2 型式B的應力和電位移強度因子…………………….33 3.4 滲透性裂縫的數值解……………………………………...34 3.4.1 型式A的應力和電位移強度因子…………………….34 3.4.2 型式B的應力和電位移強度因子…………………….35 第四章 結果與討論…………………………………………………38 4.1 型式A(非滲透性裂縫)…………………………………….38 4.2 型式B(非滲透性裂縫)…………………………………….41 第五章 結論與建議…………………………………………………44 參考文獻………………………………………………………………..45 自述……………………………………………………………………..48

    [1]R. L. Williamson, B. H. Rabin, and J. T. Drake, “Finite Element Analysis of
    Thermal Residual Stresses at Graded Ceramic-Metal Interfaces”, part Ⅰ,
    Model Description and Geometric Effects, J. Appl. Phys., Vol. 74, pp. 1310-
    1320, 1993.
    [2]R. L. Williamson and B. H. Rabin, “Numerical Modeling of Residual Stresses
    in Ni-Al2O3 Gradient Materials”, Ceramic Trans., Functionally Gradient
    Materials, Vol. 34, pp. 55-65, 1993.
    [3]A. Kawasaki and R. Watanabe, “Fabrication of Dish-Shaped Functionally
    Gradient Materials by Hot Pressing and Their Thermo-mechanical
    Performance”, Ceramic Trans., Functionally Gradient Materials, Vol. 34, pp.
    157-164, 1993.
    [4] Y. Obata and N. Noda, “Steady Thermal Stresses in a Hollow Circular
    Cylinder and a Hollow Sphere of a Functionally Gradient Material”, Journal
    of Thermal Stresses, Vol. 17, pp. 471-487, 1994.
    [5]J.N. Reddy and C.D. Chin, “Thermo-mechanical Analysis of Functionally
    Graded Cylinders and Plates”, Journal of Thermal Stresses, Vol. 21, pp. 593-
    626, 1998.
    [6] J. Y. Kim, S. Y. Kim and Y. S. Kim, “Functionally Gradient Reaction Layers
    Produced by the Directed Metal Oxidation Process”, Functionally Graded
    Materials: Manufacture, Properties, and Applications, pp. 3-13, 1997.
    [7]Y. Miyamoto, “Applications of FGM in Japan”, Functionally Graded
    Materials: Manufacture, Properties, and Applications, pp. 171-187, 1997.
    [8]F. Delale and F. Erdogan, “The Crack Problem for a Nonhomogeneous Plane”,
    Transaction of the ASME, Journal of Applied Mechanics, Vol.
    50, pp. 609-614, 1983.
    [9] F. Erdogan, “The Crack Problem for Bonded Nonhomogeneous Materials Under
    Antiplane Shear Loading”, Transaction of the ASME, Journal of Applied
    Mechanics, Vol. 52, pp. 823-828, 1985.
    [10] F. Erdogan, A. C. Kaya, and P. F. Joseph, “The Crack Problem in
    Bonded Nonhomogeneous Materials”, Transaction of the ASME, Journal of
    Applied Mechanics, Vol. 58, pp. 410-418, 1991.
    [11]H. J. Choi, “Bonded Dissimilar Strips with a Crack Perpendicular to
    the Functionally Graded Interface”, International Journal of Solid and
    Structure, Vol. 33, pp. 4101-4117, 1996.
    [12]A. M. Asfar and H. Sekine, “Crack Spacing Effect on the Brittle
    Fracture Characteristics of Semi-Infinite Functionally Graded Materials
    with Periodic Edge Cracks”, International Journal of Fracture Vol. 102,
    pp. 61-66, 2000.
    [13]X. Zhu, Q. Wang, and Z. Meng, “A Functionally Graded Piezoelectric
    Actuator Prepared Metallurgical Process in PNN-PZ-PT System”,
    Journal of Materials Science Letters, Vol. 14, pp. 516-518, 1995.
    [14]C. C. M. Wu, M. Kahn, and W. Moy, “Piezoelectric Ceramics with
    Functional Gradients: A New Application in Material Design”, Journal of
    American Ceramics Society, Vol. 79, pp. 809-812, 1996.
    [15]C. Li and G. J. Weng, “Antiplane Crack Problem in Functionally Graded
    Piezoelectric Materials”, Transactions of the ASME, Journal of Applied
    Mechanics, Vol. 69, pp. 481-488, 2002.
    [16]B. L. Wang, “A Mode Ⅲ Crack in Functionally Graded Piezoelectric
    Materials”, Mechanics Research Communications, Vol. 30, pp. 151 -159,
    2003.
    [17]S. Ueda, “Crack in Functionally Graded Piezoelectric Strip Bonded to
    Elastic Layers Under Electromechanical Loading”, Theoretical and
    Applied Fracture Mechanics, Vol. 40, pp. 225-236, 2003.
    [18]N. I. Muskhhelishvili, “Singular Integral Equations”, Noordhoff
    International Publishing, Groningen, The Netherlands, 1953.
    [19]T. J. Rivlin, “The Chebyshev Polynomials”, Wiley, New York, 1974.
    [20]F. Frdogan, G. D. Gupta, and T. S. Cook, “Numerical Solution of
    Singular Integral Equations”, In: G. C. Sih (Ed.), Mechanics of Fracture
    1: Method of Analysis and Solution of Crack Problem, Noordhoff
    International Publishing, Leyden, The Netherlands, 1973.
    [21]Z. T. Chen and S. W. Yu, “Antiplane Shear Problem for a Crack
    Between Two Dissimilar Piezoelectric Materials”, International Journal
    of Fracture, Vol. 86, pp. 9-12, 1997.
    [22]X. F. Li and X. Y. Duan, “Closed-Form Solution for a Mode Ⅲ Crack at
    the Mid-Plane of a Piezoelectric Layer”, Mechanics Research
    Communications, Vol. 28, pp. 703-710, 2001.
    [23] X. F. Li and G. J. Tang, “Antiplane Permeable Edge Cracks in a
    Piezoelectric Strip of Finite Width ”, International Journal of
    Fracture, Vol. 118, pp. 45-50, 2002.

    下載圖示 校內:2007-06-21公開
    校外:2007-06-21公開
    QR CODE