| 研究生: |
黃昱喬 Huang, Yu-Chiau |
|---|---|
| 論文名稱: |
以複合高斯小波產生人工地震新演算法 A New Algorithm of Generating Ground Accelerograms by Compound Gaussian Wavelets |
| 指導教授: |
洪李陵
Hong, Li-Ling |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 274 |
| 中文關鍵詞: | 人工地震 、反應譜相符 、複合高斯小波 、單一週期最大偏差修正法 |
| 外文關鍵詞: | artificial ground accelerogram, spectrum-compatible, compound Gaussian wavelet, single-period maximum-deviation modification method |
| 相關次數: | 點閱:118 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重要結構物基於極端水準的耐震需求,進入非線彈性狀態,需要進行動態歷時分析,此時外力輸入即為基底的加速度歷時。設計震譜為結構物耐震設計的依據,其形狀往往是諸多實測地表加速度紀錄的綜合結果,與之相符的地表加速度歷時只能人為產生。目前不論是時域或頻域演算法產生人工地表加速度歷時,其收斂條件以滿足與目標反應譜相符的容許誤差為主,較少考慮PGA的擬合、地動歷時波形的維持,以及基線偏移與否。本文首先理論推導新演算法產生人工地震,包含:(1)以高階高斯小波為基底函數;(2)直接調整反應位移歷時,再微分得地表加速度歷時;(3)加入低階高斯小波以滿足某些因地動延時有限的需求;以及(4)建議最佳需求之設定。接著以各種實例產生人工地震,進行比較,包含:(1)採用平滑或曲折的目標反應譜,一般或近斷層設計震譜;(2)選用等差或等比數列的反應譜擬合週期點,週期點數由23個至1000個不等;(3)針對不同的基底函數和修正對象;以及(4)降低反應譜擬合的容許誤差。經由理論推導與實例驗證,本文利用複合高斯小波逐次直接調整最大偏差的反應位移歷時,皆可在設定的反應譜擬合容許誤差和各項限制條件下,達致收斂,因此本文的人工地震新演算法極具實務應用價值。
Important structures will vibrate inelastically on the seismic demand of extreme level, and then their dynamic time history analyses should be performed under specified base excitation. For the purpose of seismic design, design spectra are usually proposed, where their forms are constituted based on many free-field records. Hence, ground accelerograms compatible with design spectra are generated only artificially. No matter what artificial accelerograms are generated in the time or the frequency domain, the results of convergence is reached as long as the maximum error compared with a target response spectrum is less than a tolerance, without the consideration of PGA matching, wave form maintenance, and baseline drift prevention. At first, this study develops a new algorithm theoretically to generate artificial earthquakes. The algorithm contains: (1) the use of a high-order Gaussian wavelet as the base function, (2) adjusting the response displacement time history corresponding to a single period directly, then obtaining the ground accelerogram by differential, (3) adding several low-order Gaussian wavelets to satisfy some demands due to the finite duration of ground accelerograms, and (4) suggesting the optimal demand setting. Then, the new algorithm are compared and verified through various simulation study and practical cases on generating artificial earthquakes. Those comparisons include: (1) using smooth or piecewise-defined target response spectra, general or near-fault site design spectra, (2) covering 23 to 1000 various matching periods from an arithmetic or a geometric sequence, (3) selecting different base functions and time histories under modification, and (4) reducing tolerance of matching. On the basis of theoretical formulation and practical verification, the new algorithm, which uses compound Gaussian wavelets to directly adjust the response deformation at one period at a time, can achieve convergence in all cases. Therefore, our new algorithm of generating artificial earthquakes is worthy of practical application.
[1] Abrahamson, N. A. (1992), “Non-stationary spectral matching”, Seismological Research Letters, Vol. 63 (1), pp. 30.
[2] Atik, L. A., Abrahamson, N. (2010), “An improved method for nonstationary spectral matching”, Earthquake Spectra, Vol. 26 (3), pp. 601-617.
[3] Basu, B., Gupta, V. K. (1998), “Seismic response of SDOF systems by wavelet modeling of nonstationary processes”, Journal of Engineering Mechanics, Vol. 124 (10), pp. 1142-1150.
[4] Boore, D. M. (2001), “Effect of baseline corrections on displacement and response spectra for several recodings of the 1999 Chi-Chi, Taiwan, Earthquake”, Bulletin of the Seismological Society of America, Vol. 91, pp. 1199-1211.
[5] Chopra, A. K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, New Jersey: Prentice Hall.
[6] Corotis, R., Vanmarcke, E. H., and Cornell, C. A. (1972), “First passage of nonstationary random processes”, Journal of Engineering Mechanics Division, Proceedings American Society of Civil Engineers, Vol. 98, No. EM2, pp. 401-414.
[7] Corotis, R., Vanmarcke, E. H. (1975), “Time dependent frequency content of system response”, Journal of Engineering Mechanics Division, American Society of Civil Engineers, Vol. 101 (5), pp. 623-637.
[8] Gasparini, D., Vanmarcke, E. H. (1976), Simulated Earthquake Motions Compatible with Prescribed Response Spectra, R76-4, Order No. 527, M.I.T., Department of Civil Engineering Research Report.
[9] Hancock, J., Watson-Lamprey, J., Abrahamson, N. A., Bommer, J. J., Markatis, A., McCoy, E., and Mendis, R. (2006), “An improved method of matching response spectra of recorded earthquake ground motion using wavelets”, Journal of Earthquake Engineering, Vol. 10 (1), pp. 67-89.
[10] Hong, L. L., Huang, B. (2015), “Empirical formula for strength reduction factor based on artificial ground accelerations compatible with design spectra in Taiwan”, Journal of the Chinese Institute of Engineers, Vol. 38 (2), pp.268-276.
[11] ISO (2017), Petroleum and Natural Gas Industries - Specific Requirements for Offshore Structures - Part 2: Seismic Design Procedures and Criteria, ISO 19901-2.
[12] Iwan, W. D., Moser, M. A., and Peng, C. Y. (1985), “Some observations on strong-motion earthquake measurement using a digital accelerograph”, Bulletin of the Seismological Society of America, Vol. 75, pp. 1225-1246.
[13] Kanai, K. (1961), “An empirical formula for the spectrum of strong earthquake motions”, Bulletin of the Earthquake Research Institute, Vol. 39, pp. 85-95.
[14] Kual, M. K. (1978), “Spectrum-consistent time history generation”, Journal of the Engineering Mechanics Division, Vol. 104 (4), pp. 781-788.
[15] Lilhanand, K., Tseng, W. S. (1987), “Generation of synthetic time histories compatible with multiple-damping design response spectra”, Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, Lausanne, K1, pp. 105-110.
[16] Lilhanand, K., Tseng, W. S. (1988), “Development and application of realistic earthquake time histories compatible with multiple-damping design spectra”, Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, Vol. II, pp. 819-824.
[17] Mukherjee, S., Gupta, V. K. (2002), “Wavelet-based generation of spectrum-compactible time-histories”, Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 799-804.
[18] NIST (2011), Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses, NIST GCR 11-917-15, Report of National Institute of Standards and Technology.
[19] Shahi, S. K., Baker, J. W. (2011), “An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis”, Bulletin of the Seismological Society of America, Vol. 101 (2), pp. 742–755.
[20] Suárez, L. E., Montejo, L. A. (2005), “Generation of artificial earthquakes via the wavelet transform”, International Journal of Solids and Structures, Vol. 42 (21-22), pp. 5905-5919.
[21] Tajimi, H. (1960), “A statistical method of determing the maximum response of a building structure during an earthquake”, Proceedings of 2nd World Conference on Earthquake Engineering, Science Council of Japan, Japan, Vol. 2, pp. 781-797.
[22] Vanmarcke, E. H. (1969), First Passage and Other Failure Criteria in Narrow Band Random Vibration: A Discrete State Approach, R69-68, M.I.T., Department of Civil Engineering Research Report.
[23] Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., and Cheng, C. T. (2016), “Probabilistic seismic hazard assessment for Taiwan”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 27 (3), pp. 325-340.
[24] Zaker, T. A. (1969), “Calculation of the complementary error function of complex argument”, Journal of Computational Physics, Vol. 4 (3), pp. 427-430.
[25] 內政部營建署 (2011),「建築物耐震設計規範及解說」,台北。
[26] 吳健富 (2005),「地震引起之地變動及其衰減之估算」,國立中央大學地球物理研究所博士論文,桃園。
[27] 洪李陵、盧煉元、蕭士俊、方中、侯琮欽、王雲哲、洪崇展、朱世禹、鍾興陽 (2018),「107年核電廠超越設計地震之地震安全管制技術研究」,行政院原子能委員會委託研究,新北市。
[28] 黃百誼 (2014),「單自由度和多自由度系統地震力折減係數之經驗公式研究」,國立成功大學土木工程研究所博士論文,台南。
[29] 鄭世楠、王子賓、林祖慰、江嘉豪 (2010),「台灣地區地震目錄的建置」,中央氣象局地震技術報告彙編,第54卷,第575-605頁,台北。
[30] 盧俊龍 (2009),「耐震規範之地震力折減係數研究」,國立成功大學土木工程研究所碩士論文,台南。
[31] 簡文郁、張毓文、邱世彬、劉勳仁 (2014),「近斷層設計地震研究」,NCREE-14-005,國家地震工程研究中心,台北。