| 研究生: |
黃真瑜 Huang, Chung-Yu |
|---|---|
| 論文名稱: |
應用微接觸技術製備薄膜型肌酸酐分子模版 Using a Microcontact Technology to Prepare Thin-Film Creatinine Imprinted Polymer |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 解離常數 、肌酸酐 、微接觸技術 、分子模版 、微熱卡計 |
| 外文關鍵詞: | Freundlich isotherm, Creatinine, calorimeter, Biosensor, 2-(trifluoromethyl)-acrylic acid |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床的腎臟疾病診斷時,人體血清或尿液中的肌酸酐濃度的檢測,可以協助醫護人員判斷病人的腎功能是否正常。此研究希冀藉由製備薄膜型肌酸酐分子模版,來測試人體尿液樣本中的肌酸酐濃度,再進一步組裝成可應用在檢測人體體液的生物感測器,由於此薄膜型肌酸酐分子模版為生物感測器中最重要的元件,其各種參數會深深的影響其辨識及檢測的效果,故本研究將尋找最佳化的方法製備吸附性與辨識性效能最大之肌酸酐分子模版,其中將探討的變因,包括功能性或交聯劑單體的選擇及比率、肌酸酐分子模版的效率評估模式等。結果顯示,以微熱卡計觀察目標分子與單體的吸放熱情形,配合所製備之薄膜型肌酸酐分子模版,可得到相同的趨勢,亦即與目標分子具有放熱情形之單體在製備分子模版後,在相同的吸附條件下,具有較佳之吸附效果,例如交聯劑EGDMA比TEGDMA及PEG400DMA對肌酸酐的吸附量較低,而功能性單體則以TFMAA比其他單體之MAA,AA,4VP,NVP以及Styrene對肌酸酐的吸附力最強。第二部分是探討不同的變因對分子模版吸附量的影響,單體組成為TFMAA與EGDMA以1:1莫耳組成時,起始劑為單體的10 mole%,所形成之分子模版在進行4小時之吸附後,其最高吸附量為4.65±0.08 g/cm2。此外,吸附溫度高於或低於室溫,其吸附量也會有明顯的提升。吸附常數或解離常數可經由使用不同濃度的肌酸酐溶液對分子模版吸附效能,其Kd(解離常數)為10mg/dL及N值(模版上辨識性孔洞之總濃度)為5.23mg/dL。最後,本研究進行類似物,如肌酸、尿酸及尿素等,分子之競爭吸附與真實樣品,人體中之尿液之吸附,發現所製備之分子模版對肌酸酐分子具有極佳之辨識情形。
The creatinine concentrations in serum or urine are very important determinants to help doctors to diagnose patient’s kidney function. In this study, we prepared thin film creatinine imprinted polymer to examine the creatinine concentration in human urine, and further to fabricate the biosensor for body fluid testing. As a result, the thin-film creatinine-imprinted polymer is a key element which influences the recognizing ability and sensitivity. Synthesis of MIPs, therefore, is needed to meet the requirement. Many factors including species and ratios of functional monomers or crosslinkers are as important as procedures of MIP synthesis and evaluatation. The results indicate that exothermal or endothermal reactions monitored by the isothermal titration calorimeter between target and monomer molecules could be correlated with the rebinding amount of creatinine to the creatinine MIPs. For example, MIPs composed of EGDMA have lower creatinine adsorption than TEGDMA or PEG400DMA, and TFMAA shows the highest creatinine adsorption among MAA, AA, 4VP, NVP and Styrene. Different MIPs synthesis procedures are compared for optimization, MIPs compose of TFMAA and EGDMA in the mole ratio 1:1, the initiator 10 mole% of monomer and four hours MIPs rebinding in 10mg/mL creatinine solution. The highest rebinding amount could reach 4.65±0.08 g/cm2. In addition, rebinding temperature at higher or lower than the room temperature, the rebinding amount is obviously promoted. The equilibrium adsorption constant or dissociation constant can be calculated by immsering MIPs in creatinine solutions with different concentrations for MIPs assessments. The dissociation constant (Kd) and number (N) of MIPs with composition (EGDMA/MAA=1:1) are 10mg/dL and 5.23mg/dL, respectively. Finally, several creatinine analogues such as the creatine, uric acid or urea is employed for competition rebinding on MIPs, and human urine (real sample) is also tested and MIPs show good recognition results.
[1] Norrlow, O., Glad, M., and Mosbach, K., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates, J. Chromatogr., 299, 29-41 (1984)
[2] Sellergren, B., Molecularly Imprinted Polymers, Man-made mimics of antibodies and their applications in analytical chemistry, 23, Elsevier, New York (2001)
[3] Sellergren, B., Ekberg, B., and Mosbach, K., Molecular imprinting of amino acid dertivatives in macroporous polymers, J. Chromatogr., 347, 1-10 (1985)
[4] 邱文達,陳杰峰,實證醫學 臨床流行病學方法之應用,國家圖書館出版品,(2004)
[5] 尚捷醫學檢驗專業網站,http://www.accuspeedy.com.tw/index.htm
[6] Liebig, J., Kreatin und Kreatinin, Bestandtheile des Harns der Menschen, J, Prakt. Chem., 40, 288-292 (1847)
[7] Horbaczewski, J., Neue synthese des Kreatins, Weiner Med. Jahrbucher, 459 (1885)
[8] Paulmann, W., Beitráge zur Kenntniss des Sarkosins, Arch Pharm, 232, 601-639 (1894)
[9] Brosook, H., and Dubnoff, J. W., The formation of glycocyamine in animal tissues., J. Biol. Chem., 138, 389-403 (1841)
[10] Brosook, H., and Dubnoff, J. W., The formation of creatine form glycocyamine in the liver., J. Biol. Chem., 132, 559-574 (1940)
[11] Bloch, K., and Schoenheimer, R., Studies in protein metabolism.ⅩⅠ. The metabolic relation of creatine and creatinine studied with isotopic nitrogen., J. Biol. Chem., 131, 111-119 (1939)
[12] Bloch, K., and Schoenheimer, R., The biological origin of the amidine group in creatine., J. Biol. Chem., 134, 785-786 (1940)
[13] Vigneaud, V. d., Chandler, J. P., Cohn, M., and Brown, G. B., The transfer of the methyl group from methionine to choline and creatine., J. Biol. Chem., 134, 787-788 (1840)
[14] Vigneaud, V. d., Cohn, M., Chandler, J. P., Schenck, J. R., and Simmons, S., The utilization of the methyl group of metionine in the biological synthesis of choline and creatine., J. Biol. Chem., 140, 625-641 (1841)
[15] Jaffe, M., Uber den Niederschlag welchen Pikrinsaure in normalen Harn erzeugt und uber eine neue Raction des Kreatinins., Hoppe-Seyler’s Z. Physiol. Chem., 10, 391-400 (1886)
[16] Moss, G. A., Bondar, R. J. L., and Buzzellii, D. M., Kinetic enzymatic method for determining serum creatinine, Clin. Chem., 21, 1422-1426 (1975)
[17] Tsuchida, T., and Yoda, K., Clin. Chem. 29, 51 (1983)
[18] Khan, G. F., and Wernet, W., A highly sensitive amperometric creatinine sensor, Analytica Chimica Acta, 351, 151-158 (1997)
[19] Schneider, J., Grundig, B., Renneberg, R., Cammann, K., and Madaras, M. B., Hydrogel matrix for three enzyme entrapment in creatine/creatinine amperometric biosensing, Analytica Chimica Acta, 325, 161-167 (1996)
[20] Anjal C. Sharma, and Tushar Jana., A General Photonic Crystal Sensing Motif: Creatinine in Bodily Fluids. J. AM. Chem. Soc. 126, 2971-2977 (2004)
[21] Panasyuk-Delaney, T., Mirsky, V. M., and Wolfbeis, O. S., Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer, Electroanalysis, 14, 221-224 (2002)
[22] Hsieh, R.Y. Tsai, H.A. Syu, M.J., Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials, 27, 2083-2089 (2006)
[23] 陳威志, 利用微卡計所得資訊設計肌酸酐分子模版, 國立成功大學, (2004)
[24] google, http://www.google.com.tw/
[25] Sergey A. Piletsky, S. Subrahmanyam, and Anthony P. F. Turner., Application of molecularly imprinted polymers in sensors for the environment and biotechnology. Sensor Review, 21, 292-296 (2001)
[26] Dolly Batra and Kenneth J Shea, Combinatorial methods in molecular imprinting, Current Opinion in Chemical Biology, 7, 434-442 (2003)
[27] Wulff, G., Steinert, A., Holler, O. Modification of amylase and investigation of its inclusion behavior. Carbohyd Res, 307, 19-31 (1972)
[28] 廖平喜,聚合物化學,高立圖書有限公司,(2000)
[29] Sreenivasan, K., and Sivakumar, R., Interaction of Molecularly Imprinted Polymers with Creatinine, Journal of Applied Polymer Science, 66, 2539-2542 (1997)
[30] 阿爸的粿印,蘋果日報,周日投資王,2006年六月四日
[31] Whiteside, M., Muehleman, C., Zhong, Z., Mollenhauer, J., Aurich, M., Kuettner, K. E., Chapman, L.D., Diffraction enhanced imaging for articular cartilage, Biophy Journal. 82, 470-76 (2002)
[32] Sweden, T. A., Thermometric 2250-series
[33] Groszek, A. J., A calorimeter for determination of heats of wetting, Nature, 182, 1152-1153 (2002)
[34] Chen, W.Y. Chen, C.S. Lin, F.Y, Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry, Journal of Chromatography A, 923, 1-6 (2001)
[35] Robert J. Umpleby II, Sarah C. Baxter, Miguel Bode, John K. Berch Jr., Ripal N. Shah, Ken D. Shimizu, Characterization of Molecularly Imprinted polymers with the Langmuir-Freundlich isotherm, Anal. Chem, 73, 4584-4591 (2001)
[36] Robert J. Umpleby II, Sarah C. Baxter, Miguel Bode, John K. Berch Jr., Ripal N. Shah, Ken D. Shimizu, Application of the Freundlich adsorption isotherm in the characterization of molecularly polymers. Analytica Chimica Acta, 435, 35-42 (2001)
[37] Freundlich H, Colloid and Capillary Chemistry, Methuen, London, (1926)
[38] Nevin Erciyes, A. Ali Gürten, Meysun I. Abdullah, Ahmet Ayar, Adsorption of indole and 2-methylindole on ligand-exchange matrix, Journal of Colloid and Interface Science, 278, 91-95 (2004)