簡易檢索 / 詳目顯示

研究生: 廖明忠
Liao, Ming-Chung
論文名稱: 多頻道記錄腦部神經訊號做為動物行為之研究
Multi-Site Recording Brain Activity for Animal Behavior Studies
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 31
中文關鍵詞: 多頻道紀錄獨立成分分析法動物行為研究體誘發電位
外文關鍵詞: Multi-site recording, Independent component analysis, Animal behavior study, Somatosensory evoked potential
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多頻道紀錄的技術已經被使用在取得影響資訊處理的廣大叢集神經元的特徵。本研究的目的是建立一套多頻道紀錄腦部神經元活性的系統,以及利用訊號處理的方法來擷取潛在的根源。我們將以完成一系列的動物實驗,來印證所提出的紀錄系統與分析方法為適用。首先,將麻醉Wistar種類的公鼠,再將其放在立體3D定位儀器上,以方便將電極植入主要感覺皮質區。在實驗過程中,紀錄由刺激老鼠尾巴根部所產生的體誘發電位。由於是多頻道的紀錄方式,則可利用多變數的統計方法,稱為獨立成分分析法,在神經元同時被記錄時,重新找到訊號來源,而且也能除去在電極和獨立的訊號來源間的部分同時發生之資訊。將被分解出來的訊號,利用腦部電位托撲圖來表示,以觀察訊號在腦部時空的分布。我們的結果指出獨立成分分析法的演算法,在同時紀錄體誘發電位的實驗中,能夠將電刺激的雜訊與體誘發電位分離出來,而且在這同時紀錄的體誘發電位中,能再分離出明顯的獨立成分。本研究的的長遠目的,建立一套多頻道紀錄腦部細胞外活性的系統,以探討自由活動的動物行為實驗。

    The technique for multi-site recording has been used for characterizing the dispersed activities among large populations of neurons involved in processing information. The aim of this study is to establish a signal measurement system for multi-site recording of brain activities and signal analysis method for extracting the underlying sources. To validate the proposed recording systems and analysis methods, a series of animal experiments were performed. The male Wistar rats were first anesthetized and then transferred to stereotaxic apparatus for implantation of multi-ware electrode located in both primary sensory cortex (SI). During the experiment, sessions of measurements for somatosensory evoked potential (SEP), induced by electrical stimulus at rat’s tail base, were recorded. With the multi-site recordings, a multivariate statistical method, called independent component analysis (ICA), was used to decompose the sources between concurrently recorded neurons and reduce the overlapping information measured from independent sources. The decomposed signals were represented in a topographic form to observe the spatiotemporal distribution of the brain mapping. Our results indicated that the ICA algorithm could separate the stimulus artifact from the SEP that significantly distinguish independent signal characteristics in simultaneous SEP recordings. The ultimate goal of this study is to perform multi-site recording of brain activities for studying the animal behavior at a free movement condition.

    Chinese Abstract I Abstract II Contents II List of Tables V List of Figures VII Chapter 1 Introduction 1 1.1 Multi-site Recording of Brain Activity 1 1.2 Separate Sources from Linear Summation of multivariate data 2 1.3 Motivations and Purposes 5 Chapter 2 Material and Methods 6 2.1 The Brain Activity Recording System 6 2.2 Recording Brain Activity 11 2.3 Analysis of Bain Information from Multi-site Recording 12 2.3.1 Principle Component Analysis 12 2.3.2 Independent Component Analysis 13 2.4 Topographic mapping 19 Chapter 3 Results 20 3.1 Baseline of Cortical EEG 21 3.2 Measurement of Somatosensory Evoked potential (SEP) 21 3.3 Data Analysis by Applying PCA and ICA 22 3.3.1 Data Analysis by PCA 22 3.3.2 Data Analysis by ICA 23 3.4 Spatio-temporal distribution of SEP 25 Chapter 4 Discussion and Conclusion 27 Reference 29 Figure1.2.1 Multi-wire electrode has been used for studying multi-site recording brain activities 2 Figure 1.3.1 The multi-electrode records overlapping signals from adjacent electrodes 3 Figure 1.3.2 Blind Source Separation (BSS) 4 Figure 2.1.1. Overview of the multi-site brain activity recording system 6 Figure 2.1.2. The layout of preamplifier and amplifiers 7 Figure 2.1.3 Modular design of amplifiers 8 Figure 2.1.4 Configuration of data acquiring and signals processing system 8 Figure2.1.5 The recording of 16 channels sine wave 10 Figure2.1.6 The correlation coefficient 10 Figure 2.3.1 Animals in preparation for multi-site recording 11 Figure 2.3.2 The flow chart of animal experiments for validation purpose 12 Figure 2.2.1 The theory of PCA and PCs are uncorrelated 13 Figure 2.2.2. The variance of PCs are maximized and the sources become uncorrelated 14 Figure 2.2.3 The ICA and PCA model 15 Figure 2.2.4 The Gaussian distribution versus the nongaussian distribution 16 Figure2.2.5 The procedures of FastICA 18 Figure3.1.1 The baseline of 7 channels cortical EEG 20 Figure3.2.1 The SEP of one channel after one stimulus pulse 21 Figure3.2.2 Multi-site SEP signals that extracted from averaging method 22 Figure3.3.1 Six components extracted by PAC 23 Figure3.3.2 Six independent components are separated by the ICA 24 Figure3.3.3 SEP consists of two independent components 24 Figure3.3.4 The stimulus artifact 25 Figure3.4.1 Topographical map of SEP at different time 26 Figure3.4.2 The location of electrodes in rat’s brain 26 Table 2.2.1. The differences between PCA and ICA 19

    [1] M.A. Nicolelis, A.A. Ghazanfar, M. Barbara, “Reconstructing the engram: simultaneous, multisite, many singe neuron recording,” Neuron, Vol. 18, pp. 529-537, 1997.
    [2] J.K. Chapin, M.A. Nicolelis, “Principle component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations,” Neuroscience, Vol. 94, pp. 121-140, 1999.
    [3] M. Laubach, M. Shuler, M.A. Nicolelis, “Independent component analysis for quantifying neuronal ensemble interactions,” Neuroscience, Vol. 94, pp. 141-154, 1999
    [4] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley-Interscience Publication, 2001.
    [5] FastICA MATLAB Package [Online]. Available: HTTP: http://www.cis.hut.fi/ projects/ica/fastica
    [6] T. P. Jung; S. Makeig, M. J. McKeown, A.J. Bell, T.W. Lee, T.J. Sejnowski, “ Imaging brain dynamics using independent component analysis,” Proceedings of the IEEE, Vol. 89 ,pp. 1107 –1122, 7, July 2001.
    [7] R. Vigario, J. Sarela, V. Jousmiki, M. Hamalainen, E. Oja,“Independent component approach to the analysis of EEG and MEG recordings,” IEEE Transactions on Biomed. Eng., Vol. 47, pp. 589 –593, May 2000.
    [8] F.Z. Shaw, R.F Chen, H.W. Tsao, C.T. Yen, “A multichannel system for recording and analysis of cortical field potentials in freely moving rats,” Neuroscience, Vol. 88, pp. 33-43, 1999.
    [9] E.E. Fanselow, M. A. Nicolelis, “Behavioral modulation of tactile responses in the rat somatosensory system,” Neuroscience, Vol. 19, pp. 7603-7616,1999.
    [10] D. J. Krupa , A. J. Brisben, M. A. Nicolelis, “A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli,” Neuroscience, Vol. 104, pp. 199-208, 2001.
    [11] F.Z. Shaw, R.F Chen, H.W. Tsao, C.T. Yen, “Comparison of touch- and laser heat-evoked cortical field potentials in conscious rats,” Brain Research, Vol. 824, pp. 183-196, 1999.
    [12] M. A. Nicolelis, S. Ribeiro, “Multielectrode recordings: the next steps”, Neurobiology, Vol. 12, pp. 602-606, 2002.
    [13] M. A. Nicolelis, A. A. Ghazanfar, C. R. Stambaugh, L. M. Oliveira1, M. Laubach, J. K. Chapin, R. J. Nelson, J. H. Kaas, “Simultaneous encoding of tactile information by three primate cortical areas,” Nature Neuroscience, Vol. 1, pp. 621-630, 1998.
    [14] J. D. Kralik, D. F. Dimitrov, D. J. Krupa, D. B. Katz, D. Cohen, M. L. Nicolelis, “Techniques for long-term multisite neuronal ensemble recordings in behaving animals,” Methods, Vol. 25, pp.121-150, 2001.
    [15] J. A. Harris, R. S. Petersen, M. Diamond, “Distribution of tactile learning and its neural basis,” Psychology, Vol. 96, pp. 7587-7591, 1999.
    [16] R. S. Petersen, M. E. Diamond, “Spatial–temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location,” Neuroscience, Vol. 20, pp. 6135-6143, 2000.
    [17] A. Wróbel, C.E. Kublik , P. Musial, “Gating of the sensory activity within barrel cortex of the awake rat,” Exp. Brain Res., Vol. 123, pp. 117-123, 1998.
    [18] S. Makeig, M. Westerfield, T. P. Jung, J. Covington, J. Townsend, T. J. Sejnowski, E. Courchesne, “Functionally independent components of the late positive event-related potential during visual spatial attention,” Neuroscience, Vol. 19, pp. 2665-2680, 1999.
    [19] P. Musia, C. E. Kublik , A. Wróbel, “Spontaneous variability reveals principal components in cortical evoked potentials,” Computational Neuroscience, Vol. 9,pp. 2627-2631, 1998.
    [20] P. Musia, E. Kublik, S. J. Panecki, A. Wróbel, “Transient changes of electrical activity in the rat barrel cortex during conditioning,” Brain Research, Vol.786, pp. 1-10, 1998.
    [21] A. Delorme, S. Makeig, T. Sejnowski, “Automatic artifact rejection for EEG data using high-order statistics and independant component analysis,” Proceedings of the 3rd ICA and BSS conference, pp.9-12, 2001.
    [22] T.W. Lee, M. Girolami, T. J. Sejnowski, “Independent component analysis using an extended infomax algorithm for mixed subGaussian and superGaussian sources,” Neural Computation, Vol, 11, pp. 417-441, 1999.
    [23] A. Flexer1, H. Bauer, C. Lamm, G. Dorffner, “Model-based noise reduction for signal trial evoked potential,” Proceedings of the IEEE, Vol. 9, pp. 449-508, 2001.
    [24] S. Ikeda, K. Loyama, “ICA for noisy neurobiological data,” Proceedings of the IEEE, Vol. 6, pp. 89-94, 2000.
    [25] K.R. Muller, J. Kohlmorgen, A. Ziehe, B. Blankertz, “Decomposition algorithms for analysis brain signals, ” IEEE Transactions on Biomed. Eng., Vol. 11, pp. 105-110, 2000.

    下載圖示 校內:立即公開
    校外:2003-07-09公開
    QR CODE