簡易檢索 / 詳目顯示

研究生: 林維暘
Lin, Wei-Yang
論文名稱: 考量容量與時間窗限制之多車輛同步配送回收服務路徑研究
A Study on Multi-Vehicle Routing with Synchronized Delivery and Collection Services Under Capacity and Time Window Constraints
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 68
中文關鍵詞: 車輛途程問題層空網路整數規劃貪婪類模擬退火演算法數學演算法
外文關鍵詞: Vehicle Routing Problem, Level-Space Network, Integer Programming, Greedy Simulated Annealing Algorithm, Matheuristic Algorithm
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來餐飲業面臨競爭激烈和獲利空間縮減等問題,加上COVID-19疫情影響,促使業者積極尋求創新服務模式。本研究提出一個嶄新的多車輛同步配送及回收服務之途程問題,不同於傳統車輛途程問題,本研究同時考量:(1)正向物流與逆向物流的整合,實現餐點配送與餐具回收的雙向服務;(2)軟時間窗限制,允許適度的服務時間彈性;(3)車輛容量限制,確保配送效率最佳化。
    在理論建構方面,本研究以層空網路架構為基礎,建立整數規劃模型。此架構能有效描述車輛在不同時空層次的移動軌跡,使模型更精確反映實際運作情況。為克服NP-Hard問題的計算複雜性,本研究開發三種創新演算法:(1)貪婪類演算法—整合工作路線、單點互換及2-opt路徑交換三種策略,實現多層次最佳化;(2)貪婪類模擬退火演算法—結合貪婪策略與模擬退火架構,通過溫度參數動態調整搜尋空間,平衡探索與利用;(3)數學演算法—在模擬退火框架下融合整數規劃邏輯,分別處理工作分配與服務時刻最佳化,提升解的品質。
    實驗結果顯示演算法效能具顯著優勢:在小規模網路(5個客戶)中,整數規劃模型能在最長27秒內求得最佳解;中規模網路(6-9個客戶)採用貪婪類模擬退火演算法,求解時間可從數千秒大幅縮短至100秒以內,同時維持良好的解品質;大規模網路(20-25個客戶)則以數學演算法表現最佳,相較於整數規劃模型花費7200秒的求解效果,數學演算法在某些測資只需花其1/6的時間即可改善2.79倍的解品質。特別是在考慮軟時間窗限制的情況下,本研究提出的演算法展現出優異的適應性與穩定性。
    研究成果不僅可為餐飲業提供實用的配送路徑最佳化工具,更為環保永續經營提供具體方案。透過同步配送與回收機制,有效降低一次性餐具使用,實現經濟效益與環保目標的雙贏。實驗結果亦證實,本研究所提出的解決方案能因應不同規模的實務需求,在效率與解品質之間取得良好平衡。

    This study addresses a novel multi-vehicle routing problem with synchronized delivery and collection services, incorporating soft time window and capacity constraints. The research develops an integer programming model based on the level-space network structure to optimize vehicle routing for food delivery and tableware collection services.
    To overcome the computational complexity of this NP-hard problem, three innovative algorithms are proposed: (1) greedy algorithms incorporating route construction, single-point exchange, and 2-opt path exchange strategies; (2) greedy simulated annealing algorithm combining greedy strategies with simulated annealing framework; and (3) matheuristic algorithm integrating integer programming logic with simulated annealing structure.
    Numerical experiments demonstrate superior algorithmic performance: for small networks (5 customers), the integer programming model obtains optimal solutions within 27 seconds. In medium networks (6-9 customers), the greedy simulated annealing algorithm dramatically reduces computation time from thousands to under 100 seconds while maintaining solution quality. For large networks (20-25 customers), the matheuristic algorithm excels by achieving 2.79 times better solution quality while requiring only one-sixth of the computation time compared to the integer programming model's 7200-second solutions. Notably, the proposed algorithms exhibit exceptional adaptability and stability when considering soft time window constraints.
    The research contributes both theoretical insights to the vehicle routing problem and practical value to the food delivery industry, offering an environmentally sustainable solution through synchronized delivery and collection services.

    摘要 I 誌謝 VI 表目錄 IX 圖目錄 X 1 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 4 2 第二章 文獻探討 6 2.1 具容量限制之車輛途程問題 6 2.2 具收送貨限制之車輛途程問題 7 2.3 具時間窗及同時收送貨限制之車輛途程問題 9 2.4 車輛途程問題之求解方法文獻回顧 11 2.5 小結 14 3 第三章 CVRPSPDSTW問題求解整數規劃模型之建立 16 3.1 問題描述 16 3.2 問題假設 17 3.3 網路架構 19 3.4 數學模式 19 3.4.1 符號定義 19 3.4.2 目標式 21 3.4.3 限制式 21 3.5 整數規劃模型驗證 24 3.6 小結 27 4 第四章 車輛移動路徑之演算法 28 4.1 貪婪類演算法 28 4.1.1 工作路線貪婪演算法 29 4.1.2 單點互換貪婪演算法 32 4.1.3 2-opt路徑交換貪婪演算法 33 4.2 貪婪類模擬退火演算法 34 4.3 數學演算法 36 4.4 小結 38 5 第五章 數值分析 39 5.1 測試網路與資料參數設定 39 5.2 小規模網路求解結果分析 40 5.3 中規模網路求解結果分析 42 5.4 大規模網路求解結果分析 44 5.5 小結 47 6 第六章 結論與未來研究方向 48 6.1 結論與貢獻 48 6.2 未來研究方向 52 7 參考文獻 54

    中文文獻
    林士安。2009。考量裝載可行性之車輛途程問題:以B2B個案公司為例。國立東華大學。
    張夏銘。2016。混合式人工蜂群結合模擬退火演算法求解物流車路徑規劃問題。國立交通大學。
    廖敏婷。2012。考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研究。國立成功大學。

    英文文獻
    Ahn, B. H., & Shin, J. Y. (1991). Vehicle-routing with time windows and time-varying congestion. Journal of the Operational Research Society, 42(5), 393-400.
    Ai, T. J., & Kachitvichyanukul, V. (2009). A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research, 36(5), 1693-1702.
    Avci, M., & Topaloglu, S. (2015). An adaptive local search algorithm for vehicle routing problem with simultaneous and mixed pickups and deliveries. Computers & Industrial Engineering, 83, 15-29.
    Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, part I: Route construction and local search algorithms. Transportation Science, 39(1), 104-118.
    Baldacci, R., Toth, P., & Vigo, D. (2010). Exact algorithms for routing problems under vehicle capacity constraints. Annals of Operations Research, 175(1), 213-245.
    Curtis, S. A. (2003). The classification of greedy algorithms. Science of Computer Programming, 49(1-3), 125-157.
    Crispim, J., & Brandão, J. (2005). Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls. Journal of the Operational Research Society, 56(11), 1296-1302.
    Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management
    Science, 6(1), 80-91.
    Dethloff, J. (2001). Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up. OR-Spectrum, 23(1), 79-96.
    Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 40(2), 342-354.
    Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time Constrained Routing and Scheduling. Handbooks in Operations Research and Management Science, 8, 35-139.
    Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2002). VRP with pickup and delivery. The Vehicle Routing Problem, 9, 225-242.
    Fisher, M. (1995). Vehicle routing. Handbooks in Operations Research and Management Science, 8, 1-33.
    Faruk, Y., & Tüfekçí, S. (Eds.). (2017). Handbook of research on applied optimization methodologies in manufacturing systems. IGI Global.
    Jacobs-Blecha, C., & Goetschalckx, M. (1992). The vehicle routing problem with backhauls: properties and solution algorithms. National Transportation Research Board, 13.
    Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing problem and its variants. Intelligent Information Management, Vol.4 No.3
    Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research Logistics (NRL), 54(8), 811-819.
    Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and pick-up points. Transportation Research Part A: General, 23(5), 377-386.
    Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations. Transportation Research Part B: Methodological, 89, 19-42.
    Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. European Journal of Operational Research, 162(1), 126-141.
    Solomon, M. M., & Desrosiers, J. (1988). Survey paper—time window constrained routing and scheduling problems. Transportation Science, 22(1), 1-13.
    Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery problem. Transportation Science, 29(1), 17-29.
    Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics, 123(1-3), 487-512.
    Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle-routing problem. Informs Journal on Computing, 15(4), 333-346.
    Tütüncü, G. Y., Carreto, C. A., & Baker, B. M. (2009). A visual interactive approach to classical and mixed vehicle routing problems with backhauls. Omega, 37(1), 138-154.
    Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation science, 31(2), 170-186.
    Wang, H. F., & Chen, Y. Y. (2012). A genetic algorithm for the simultaneous delivery and pickup problems with time window. Computers & Industrial Engineering, 62(1), 84-95.
    Potvin, J. Y., Kervahut, T., Garcia, B. L., & Rousseau, J. M. (1996). The vehicle routing problem with time windows part I: tabu search. Informs Journal on Computing, 8(2), 158-164.

    無法下載圖示 校內:2030-02-06公開
    校外:2030-02-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE