| 研究生: |
陳威宇 Chen, Wei-Yu |
|---|---|
| 論文名稱: |
製程變數對固態反應製備之 YAG 粉體特性的影響 Effects of Processing Parameters on the Characteristics of YAG Powders Prepared with Solid State Reaction |
| 指導教授: |
黃啟原
Huang, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 釔鋁石榴石 、螢光粉體 、球磨 、分級 |
| 外文關鍵詞: | YAG, phosphor, ball mill, classification |
| 相關次數: | 點閱:72 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在 Y2O3-Al2O3 二相系統中,YAG 生成之擴散機制主要為 Al 擴散進入 Y2O3 中,故合成 YAG 之晶粒大小與起始粉末中 Y2O3 的粒徑大小有著很大的關聯性。本研究利用固態反應法製備 YAG 粉體,並以起始原料的球磨參數與熱處理條件作為製程之變數,探討起始原料之大小對於製備 YAG 粉體特性之影響。
研究結果顯示,利用控制球磨的漿料固含量與球磨轉速可獲得小粒徑且具高均一性的 Y2O3 (YB),並進一步以熱處理獲得不同粒徑且高均一性的Y2O3 (Y14、Y15)。後續以 YB 合成 YAG,於 1400℃ 煅燒即可合成純相 YAG,但以1600℃ 煅燒合成微米級 YAG 則會有蠕蟲狀或嚴重燒結現象,需要以研磨和再分級加以處理,但對於粉體之晶型會有嚴重影響,對於應用上較為不利;此外,以 Y14 與 Y15 作為起始粉末,隨著起始粉末越大,合成純相 YAG 所需的溫度也隨之提高,且在同樣煅燒條件下所合成的 YAG 粉末也隨之越大,但所合成之 YAG 較無團聚產生,故不需以煆燒後球磨的方式處理,較能保持合成微米級 YAG 的晶型與結晶度。因此,本研究認為欲以固態反應法合成微米級之 YAG 粉體,所選用的 Y2O3 起始粉末應以 500 nm 以上之單晶粉體較佳。
In the Y2O3-Al2O3 system, Al3+ diffuses into the Y2O3 structure in the reaction process of YAG synthesis by solid state reaction, therefore grain size of synthesizes of the YAG powder has the big relatedness with the Y2O3 particle size. This study using the solid state reaction to synthesis the YAG powder, and takes variable of the starting material's ball milling parameter and the heat treatment condition to discuss the size of the starting powder regarding prepares influence of the YAG powder characteristic.
The results showed that the use controls ball milling's solid content and the rotational speed may obtain the small size particle with high homogeneity Y2O3 (YB), and obtains the different particle size with high homogeneity Y2O3 (Y14, Y15) by the heat treatment. Following synthesizes YAG by YB, we can obtain pure YAG after calcining in 1400℃, but will have the serious vermicular growth by calcining in 1600℃ to synthesis micron size YAG. Grind and to grade again processes is helpful to obtain the YAG particle, but will have the serious influence of crystallinity of regarding the powder. In addition, takes the powder by Y14 and Y15, as bigger as the Y2O3 starting powder, the temperature of synthesizing pure YAG needs also along with it enhancement. Synthesizes with the same calcine condition the YAG powder is also bigger along with it, but synthesis of YAG does not have the serious agglomeration, therefore it’s unnecessary to use re-treatment processing, can maintain the particle shape and crystallinity of YAG. Therefore, this study demonstrated that synthesizes micron size YAG powder by the solid state reaction, it’s better to select the single crystal Y2O3 with size 500 nm above as starting powder.
1. 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2005。
2. 劉如熹、王健源,白光發光二極體製作技術,全華圖書,台灣台北,2005。
3. 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國90年。
4. Y. Wu, J. Li, F. Qiu, Y. Pan, Q. Liu, J. Guo, “Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method,” Ceram. Int., 32, 785-788 (2006).
5. J. Li, Y. Wu, Y. Pan, W. Liu, L. An, S. Wang, J. Guo, “Solid-state-reaction fabrication and properties of a high-doping Nd:YAG transparent laser ceramic,” Chem. Eng. 2 [3] 248-252 (2008).
6. X. Li, J. Li, Z. Xiu, D. Huo, X. Sun, “Transparent Nd:YAG ceramics fabricated using nanosized γ-Alumina and Yttria powders,” J. Am. Ceram. Soc., 92 [1] 241-244 (2009).
7. 張永欣,掺鐿釔鋁石榴石之雙鏡式環形共振腔雷射之研製,國立中山大學物理研究所碩士論文,民國93年。
8. 易瑞昀,多次再入射掺鐿釔鋁石榴石環形雷射,國立中正大學光電工程研究所博士論文,民國95年。
9. C. Q. Li, H. B. Zuo, M. F. Zhang, J. C. Han, S. H. Meng, “Fabrication of transparent YAG ceramics by traditional solid-state-reaction method,” Tans. Nonferrous Met. Soc. China 17, 148-153 (2007).
10. D. Viechnicki and Y. I. Strakhov, “Solid-state formation of Nd:Y3Al5O12 (Nd:YAG),” Am. Ceram. Soc. Bull., 58 [8] 790-791 (1979).
11. A. E. Zhukovskaya and V. I. Strakhov, “Influence of the molar ratio pf Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates,” Prikadnoi Khimii, 48, 1125-1127 (1975).
12. A. Ya. Neiman, E. V. Tkachenko, L. A. Kvichko, L. A. Korok, “Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russ. J. Inorg. Chem., 25 [9] 2340-2345 (1980).
13. V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Yu. P. Udalov, L. P. Kachalova, “Interaction of yttrium and aluminum oxides,” Inorg. Mater., 19 [1] 95-99 (1983).
14. R. C. Buchanan, “Ceramic materials for electronics : processing, properties, and application,” Marcel Dekker, Inc., New York (1986).
15. H. Yamamoto, Phosphor global summit, March 19, Phoenix, Arizona, USA (2003).
16. C. Klein, C.S. Hurlbut,jr., Manual of Mineralogy, John wiley & sons, Inc., (1993).
17. S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, “Effects of milling and calcination temperature on the compressibility and sinterability of a nanocrystalline Al2O3-Y3Al5O12 composite powder,” J. Am. Ceram. Soc., 91, [11] 3546-3551 (2008).
18. O. Fabrichnaya, H. J. Seifert, T. Ludwig, F. Aldinger, A. Navrotsky, “The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system,” Scand. J. Metall., 30, 175 (2001).
19. S. Ramanathan, M. B. Kakade, S. K. Roy, K. K. Kutty, “Processing and characterization of combustion synthesized YAG powders,” Ceram. Int., 29, 477-484 (2003).
20. Y. Iida, A. Towata, T. Tsugoshi, M. Furukawa, “In situ Raman monitoring of lowtemperature synthesis of YAG from different starting materials,” Vibra. Spectro., 19, 399 (1999)
21. C. K. Ullal, K. R. Balasubramaniam, A. S. Gandhi, V. Jayaram, “Non-equilibriumphase synthesis in Al2O3-Y2O3 by spray pyrolysis of nitrate precursors,” Acta. Mater., 49, 2691 (2001).
22. A. Purwanto, W. N. Wang, I. W. Lenggoro, K. Okuyama, “Formation and Luminescence Enhancement of Agglomerate-Free YAG:Ce3+ Submicrometer Particles by Flame-Assisted Spray Pyrolysis,” J. Elec. Chem. Soc., 154 [3] 91-96 (2007).
23. K. M. Kinsman, J. Mckittrick, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc., 77 [11] 2866-2872 (1994).
24. 顏富士,陶瓷技術手冊(上),中華民國產業科技發展協進會與中華民國粉末冶金協會出版,38-45,民國83年。
25. Y. Pan, M. Wu, Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor,” Mater. Sci. Eng. B, 106 (2004)
26. L. Wen, X. Sun, Z. Xiu, S. Chen, C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Euro. Ceram. Soc., 24 [9] 2681-2688 (2004).
27. C. H. Lu, W. T. Hsu, “Sol-gel pyrolysis and photoluminescent characteristic of europium-ion doped yttrium aluminum garnet nanophosphors,” J. Euro. Ceram. Soc., 24, 3723-3729 (2004).
28. J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders : the effect of precipitant,” J. Euro. Ceram. Soc., 20, 2395-2405 (2000).
29. M. Nyman, J. Caruso, M. J. Hampden-Smith, “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” J. Am. Ceram. Soc., 80 [5] 1231-1238 (1997).
30. G. Xia, S. Zhou, J. Zang, J. Xu, “Structural and optical properties of YAG:Ce3+,” Mater. Chem. Phys., 64, 41-44 (2000).
31. O. Yamaguchi, K. Matui, K. Shimizu, “Formation of YAlO3 with garnet structure,” Ceram. Int., 11, 107 (1985).
32. C. D. Veitch, “Synthesis of polycrystalline yttrium iron garnet and yttrium aluminum garnet from organic precirsos,” J. Mater. Sci., 26, 6527-6532 (1991).
33. N. J. Hess, G. D. Maupin, L. A. Chick, D. S. Sunberg, D. E. McCreedy, T. R. Armstrong, “Synthesis and crystallization of yttrium-aluminium garnet and related compounds,” J. Mater. Sci., 29, 1873 (1994).
34. H. G. Wang, H. Herman, X. Liu, “Activation energy for crystal growth using isothermal and continuous heating processes,” J. Mater. Sci., 25, 2339-2343 (1990).
35. L. Wen, X. Sun, Z. Xiu, S. Chen, C. T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Euro. Ceram. Soc., 24, 2681-2688 (2000).
36. M. S. Tsai, W. C. Fu, G. M. Liu, “Effect of pre-aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method,” J. Alloys Comp., 440, 309-314 (2007).
37. M. S. Tsai, W. C. Fu, W. C. Wu, C. H. Chen, C. C. Yang, “Effect of the aluminum source on the formation of yttrium aluminum garnet (YAG) powder via the solid state reaction,” J. Alloys Comp., 404, 309-314 (2007).
38. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, M. Nakatsuka, “Preparation and optical properties transparent Ce:YAG ceramics for high power white LED,” Mater. Sci. Eng., 1, (2009)
39. 蔡振宏,原料粒徑比對固態反應合成YAG的影響,國立成功大學資源研究所碩士論文,民國98年。
40. 賴佳芸,氧化釔粉末粒徑對 YAG 生成活化能之影響,國立成功大學資源研究所碩士論文,民國97年。
41. 陳士琦,相變化材料微粒懸浮流體之相關熱物性質實驗量測與分析,國立成功大學機械工程研究所碩士論文,民國92年。
42. J. S. Reed, Principles of Ceramics Processing, John wiley & sons, Inc., (1995).