| 研究生: |
廖信宇 Liao, Hsin-Yu |
|---|---|
| 論文名稱: |
以Android系統智慧型手機開發的高爾夫揮桿過程分析系統 A Golf Swing Analysis System Using Android Smartphones |
| 指導教授: |
斯國峰
Ssu, Kuo-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 智慧型手機 、高爾夫 |
| 外文關鍵詞: | Smartphone, Golf |
| 相關次數: | 點閱:61 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在運動科學這個領域裡,有許多熱門的研究,高爾夫揮桿過程分析就是其中的一種。目前的高爾夫揮桿過程分析研究中,研究者最常使用的有兩種方法。第一種是在使用者身上裝多個感測器,利用感測器傳回的訊號重建揮桿時的動作模型。這種方法常需要將感測器裝在關節節點上,影響使用者關節的活動,使揮桿過程不順暢。另一種方法是使用錄影機錄下使用者的揮桿動作。但是一台錄影機只能有一個視角,如果使用者想從各個角度查看自己揮桿時的動作,就必須架設相對應視角的攝影機,而這通常需要一塊特定的空地才能架設完整的錄影系統。採取這種方法就需要多負擔場地的費用,以及使用者到特定實驗地點的運輸成本。本篇論文提出一個用智慧型手機上的感測器分析高爾夫揮桿動作的方法,並整理成錯誤偵測模型,在找到手部動作上的問題後提供使用者改進建議做為回饋。這個方法利用了現代智慧型手機上普遍配備有感測器群組的特性,將智慧型手機配戴在手臂上,使用者身上只需要一個感測器裝置。另一方面,智慧型手機可以隨身攜帶,所以使用者不用特地跋涉到架設特殊儀器的地點,節省了時間和空間的成本。這篇論文使用Android 系統的手機作為實驗器材,開發出一款應用程式來分析高爾夫揮桿動作。這款應用程式提供兩種模式。第一種預設模式,給揮桿過程會發生特定問題的使用者使用;第二種個人模式,提供經驗豐富且對自己球技有信心的人使用。實驗結果顯示這個方法可以有效地分析高爾夫揮桿過程中手部動作的問題。
Golf swing motion analysis is one of the most popular research topics in the field of sport science. Nowadays researchers either attach multiple sensors to the golf players' body or deploy cameras to record the golf players' swing motion. If the sensors are attached to the key joints in the human body, the players' swing motion will be affected by the sensors. If the players want to examine their motion comprehensively, multiple cameras and a special place are required. The requirement of a special place will cause transportation and space costs.
This thesis proposes a brand new mechanism. This mechanism analyzes golf swing motion and provides feedback to the user. By using the sensors equipped on smartphones, the sensing device attached to human body is simplified. Moreover, since smartphone is portable, the transportation and space costs are saved.
An android application is developed to evaluate the performance of this mechanism. This application provides two modes, default mode and user specific mode, for the golf players. Default mode is designed for players whose golf swing motion contains specific problems. User specific mode is designed for well-experienced players. The experiment results validate that the application is useful for detecting forearm motion during golf swing.
[1] T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. Spasojevic, and J. Walling, “Distinguishing Users with Capacitive Touch Communication,” in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Aug. 2012, pp. 197–208.
[2] W. Hongman, Z. Xiaocheng, and C. Jiangbo, “Acceleration and Orientation Multisensor Pedometer Application Design and Implementation on the Android Platform,” in First International Conference on Instrumentation, Measurement, Computer, Communication and Control, Oct. 2011, pp. 249–253.
[3] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid: Multi-layer Profiling of Android Applications,” in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Aug. 2012, pp. 137–148.
[4] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou, “MicroCast: Cooperative Video Streaming on Smartphones,” in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, June 2012, pp. 57–70.
[5] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “SwordFight: Enabling a New Class of Phone-to-Phone Action Games on Commodity Phones,” in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, June 2012, pp. 1–14.
[6] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to Smartphones: Incentive Mechanism Design for Mobile Phone Sensing,” in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Aug. 2012, pp. 173– 184.
[7] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song, “CoMon: Cooperative Ambience Monitoring Platform with Continuity and Benefit Awareness,” in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, June 2012, pp. 43–56.
[8] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A Programming Framework for Crowd-Sensing Applications,” in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, June 2012, pp. 337–350.
[9] O. Postolache, P. Girao, M. Ribeiro, M. Guerra, J. Pincho, F. Santiago, and A. Pena, “Enabling Telecare Assessment with Pervasive Sensing and Android OS Smartphone,” in IEEE International Workshop on Medical Measurements and Applications Proceedings, May 2011, pp. 288–293.
[10] J.-K. Min and S.-B. Cho, “Activity Recognition based on Wearable Sensors Using Selection/Fusion Hybrid Ensemble,” in IEEE International Conference on Systems, Man, and Cybernetics, Oct. 2011, pp. 1319–1324.
[11] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “PBN: Towards Practical Activity Recognition Using Smartphone-Based Body Sensor Networks,” in Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, Nov. 2011, pp. 246– 259.
[12] T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and J. Song, “E-Gesture: A Collaborative Architecture for Energy-efficient Gesture Recognition with Hand-worn Sensor and Mobile Devices,” in Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, Nov. 2011, pp. 260–273.
[13] M. Iqbal, M. Handte, S. Wagner, W. Apolinarski, and P. Marron, “Enabling Energy-Efficient Context Recognition with Configuration Folding,” in IEEE International Conference on Pervasive Computing and Communications, Mar. 2012, pp. 198–205.
[14] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell, “A Survey of Mobile Phone Sensing,” IEEE Communications Magazine, vol. 48, no. 9, pp. 140– 150, Sept. 2010.
[15] J. E. Bae, J. W. Kim, H. J. Kim, and H. S. Park, “Determination of Golf Ball Flight Based on Planar Structure Sensor,” in Proceedings of the 10th Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing, Dec. 2009.
[16] K. Watanabe and M. Hokari, “Measurement of 3-D Loci and Attitudes of the Golf Driver Head While Swinging,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 36, no. 6, pp. 1161–1169, Nov. 2006.
[17] P. Chotimanus, N. Cooharojananone, and S. Phimoltares, “Real Swing Extraction for Video Indexing in Golf Practice Video,” in Computing, Communications and Applications Conference, Jan. 2012.
[18] Y. Ishii, M. Awaji, and K. Watanabe, “Stability of Golf Club Motion and EMG when Swinging,” in International Joint Conference SICE-ICASE, Oct. 2006, pp. 2344–2347.
[19] H. Ghasemzadeh, V. Loseu, E. Guenterberg, and R. Jafari, “Sport Training Using Body Sensor Networks: A Statistical Approach to Measure Wrist Rotation for Golf Swing,” in Proceedings of the Fourth International Conference on Body Area Networks, Apr. 2009.
[20] A. Blake and C. Grundy, “Evaluation of Motion Capture Systems for Golf Swings: Optical vs. Gyroscopic,” in 30th International Conference on Information Technology Interfaces, June 2008, pp. 409–414.
[21] H. Negoro, M. Ueda, K. Watanabe, K. Kobayashi, and Y. Kurihara, “Measurement and Analysis of Golf Swing Using 3D Acceleration and Gyroscopic Sensors,” in Proceedings of SICE Annual Conference, Sept. 2011, pp. 1111–1114.
[22] Android developers. [Online]. Available: http://developer.android.com/index.html