簡易檢索 / 詳目顯示

研究生: 林奇歐
Lin, Chi-Ou
論文名稱: 大腸桿菌中鐵調控因子與其經亞硝基轉換後之生物無機化學研究
Identification and Characterization of Ferric Iron Uptake Regulatory Protein (Fur) and its Protein Bound Dinitrosyl Iron Complex (DNIC) in Escherichia coli
指導教授: 俞聖法
Yu, Sheng-Fa
共同指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 雙亞硝基鐵化合物鐵調控因子轉錄因子大腸桿菌一氧化氮
外文關鍵詞: Escherichia coli, ferric ion regulatory protein (Fur), nitrosylation, DiNitrosyl-Iron-Complexes (DNIC)
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Fur(Ferric Iron Uptake Regulatory Protein)蛋白質被認為是在微生物系統中,其生理環境內,調控胞內鐵離子濃度的轉錄因子。
    在本篇研究中,我們成功地利用重組基因,在大腸桿菌系統下過量表現Fur重組蛋白質,隨後使用鎳離子螯合管柱純化出Fur蛋白質,並藉由14% SDS-PAGE、Native-PAGE、LC-MS/MS、ICP-OES更進一步的確認Fur蛋白質特性。
    Fur蛋白質加入二乙胺雙硝基化合物(diethylamine dinitric oxide, DEANO),會使蛋白質中的鐵金屬生成雙亞硝基鐵化合物(Dinitrosyl Iron Complex, DNIC)。藉由電子順磁共振光譜儀偵測到雙亞硝基鐵化合物在gav=2.03的特殊訊號。
    Fur蛋白質對基因序列“Fur-box”有極高的親合力(Kd=142.5 nM) ,亞硝基化的Fur蛋白質,則失去其對基因序列”Fur-box”的親和力,此外,這兩種狀態的蛋白質,在圓偏光二色性光譜偵測下,二級結構在組成比例上發生改變(亞硝基化後,Fur蛋白質的α-helix結構增加至3.3%;而有5.5%的β-sheet轉變成β-turn)。經由X光吸收近邊緣結構(X-ray Absorption Near-Edge Structures, XANES) 的數據顯示, Fur蛋白質活性中心呈現亞鐵離子二價組態,而亞硝基化Fur蛋白質活性中心,則是九個電子的雙亞硝基含鐵蛋白。重要的是,其配位對稱性在亞硝基化後產生明顯的改變。延伸X光吸收近邊緣細微結構 (Extended X-ray Absorption Fine Structure, EXAFS)顯示加入二乙胺雙硝基化合物後,Fur蛋白質中的鐵會從五配位的三角雙錐體或六配位的八面體結構轉變成四配位的四面體結構。藉由Spin label技術,在Wild Type-Fur上加入MTSL自由基標示於cysteine胺基酸上,以及利用點突變技術,設計突變Fur蛋白質以利MTSL自由基標示於目標位置上,以EPR觀測spin-spin interaction來推測活性中心鐵離子在Fur蛋白質的三度空間結構的位置。

    A fur gene (447 bp) from the chromosomal DNA in Escherichia coli K12 were constructed into a pBAD--TOPOR vector (Invitrogen). After its transformation into Escherichia coli TOPO, we overexpressed and purified the recombinant Fur protein (MW=21.2kDa with His-tag) by nickel-charged histidine-binding resin column. Eluted fractions of Fur were further characterized by 14% SDS-PAGE, Native-page, LC-MS/MS, and elemental analysis via ICP-OES.

    Active Fur performs as a homo-dimeric protein. Each of Fur monomer contains a ferrous iron, and a zinc ion. Its iron core could be further modulated to form a dinitrosyl iron complex (DNIC) after the treatment of gaseous NO or the NO donor of DEANO(diethylamine dinitric oxide). This protein bound DNIC is appeared with gav=2.03 observed in EPR spectroscopy.

    Dimeric Fur can recognize a DNA element within Fur promoters with a 19-bp AT-rich palindromic sequence called a Fur-box. Here, we have determined that Fur protein can bind to the Fur-box with high affinity(Kd=142.5 nM) by EMSA(Electrophoretic Mobility Shift Assays) and fluorescence spectroscopy. After the treatment of NO, nitroylated Fur cannot bind with Fur-box.

    Circular Dichroism spectra revealed that the secondary structure of nitrosylated Fur is different from that of Fur. More-turn structural component has been converted (5.5%) from part of -sheet structure. The iron core in Fur is presented as ferrous state whereas the nitrosylated Fur possess {Fe(NO)2}9. The symmetry of iron center in nitrosylated Fur protein is changed from trigonal bipyramidal or octahedral to tetrahedral geometry after treating with NO in X-ray Absorption Near-Edge Structures (XANES). Extended X-ray Absorption Fine Structure (EXAFS) results show that, the coordination numbers of iron center at the active site will be changed from five or six-coordinated environment with N/O ligands from His, Asp/Glu in distances of 2.16Å and 2.43Å to four-coordinated with N/O ligands from His, Asp/Glu upon the addition of DEANO. Finally, we attempt to incorporated MTSL(S-(2,2,5,5-tetramethyl-2,5-dihydro-1H- pyrrol-3-yl)methyl methanesulfonothioate) at appropriate site(s) with free cysteine or mutated by Cys in Fur, after nitrosylation, the spin-spin interaction detected by CW-EPR (Continuous Wave-Electron Paramagnetic Resonance) between the organic free radical and dinitrosyl iron complex within a distance in 5-15 Å should allow us to identify the location of the ferrous iron in the three dimensional structure of Fur.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 INTRODUCTION 1 1-1 序言 1 1-2 一氧化氮在生物系統中的來源及功能 2 1-3 一氧化氮 6 1-4 鐵調控因子氮白質(FERRIC UPTAKE REGULATOR, FUR) 9 1-5 FUR蛋白質的背景 11 1-6 表現載體 15 1-7 電子順磁共振 18 1-8 蛋白質自旋標記 19 1-9 X光吸收近邊緣結構(XANES)與延伸 X光吸收近邊緣細微結構(EXAFS)分析法 22 1-10 研究目的 25 第二章 實驗材料及方法 26 2.1 藥品與儀器 26 2.1.1 蛋白質來源 26 2.1.2 宿主細胞 26 2.1.3 藥品 26 2.1.4 儀器 27 2.2 實驗流程 35 2.3 蛋白質基因選殖 36 2.3.1 菌種培養 36 2.3.2 抽取染色體基因(Genomic DNA Extraction) 36 2.3.3 複製基因片段 37 2.3.4 純化聚合酶鏈式反應產物 38 2.3.5 轉型(Transformation) 39 2.4 蛋白質的大量表達(OVEREXPRSSION) 42 2.4.1 迴旋式恆溫震盪培養培養 42 2.4.2 發酵槽培養 42 2.5 蛋白質純化 43 2.5.1 破菌 44 2.5.2 蛋白質純化 44 2.5.3 過濾濃縮 45 2.6 表達蛋白質特性分析 46 2.6.1 SDS膠體電泳與NativePAGE電泳 46 2.6.2 膠體蛋白質消化與LC-MSMS分析 47 2.6.3 ICP-OES金屬含量分析 50 2.7 亞硝基化FUR蛋白質 50 2.8 圓偏光二色性光譜(CIRCULAR DICROISM, CD) 51 2.9 凝膠電泳測定FUR蛋白質與其作用DNA片段序列 51 2.10 螢光光譜儀測定FUR蛋白質及亞硝基化FUR蛋白質與其作用DNA片段序列 52 2.11 自由基標示(SPIN LABEL) 52 2.11.1 樣品製備 52 2.11.2 自由基標示 56 2.12 X-RAY吸收光譜 57 第三章 實驗結果與討論 58 3.1 表現系統PBAD-TOPO 58 3.2 表現蛋白質純化與特性分析 60 3.2.1 誘導試劑濃度測試及蛋白質純化 60 3.2.2 Native page 61 3.2.3 LC-MSMS 62 3.2.4 UV-vis光譜 63 3.2.5 ICP-OES 64 3.3 FUR蛋白質與亞硝基化FUR蛋白質之特性差異分析 65 3.3.1 EPR 66 3.3.2 圓偏光二色性光譜(Circular Dichroism, CD) 66 3.3.3 Fur蛋白質和亞硝基化Fur蛋白質對基因片段fur-box之作用 67 3.4 SPIN LABEL 70 3.5 XANES 72 3.6 EXAFS 72 3.7 實驗討論 75 第四章 結論 88 第五章 參考文獻 90 附錄一 93 附錄二 95 附錄三 97

    (1) Richter-Addo, G. B. L., P.; Legzdins, P. Metal Nitrosyls; Oxford University Press: New York, 1992.
    (2) Wayne, R. P. Chemistry of Atmospheres; Oxford University Press, Oxford UK, 1985.
    (3) Furchgott, R. F. Angew Chem Int Ed Engl 1999, 38, 1870-1880.
    (4) Koshland, D. E. Science 1992, 258, 1861.
    (5) Butler, A. R.; Megson, I. L. Chem Rev 2002, 102, 1155-1166.
    (6) Marletta, M. A.; Hurshman, A. R.; Rusche, K. M. Curr Opin Chem Biol 1998, 2, 656-663.
    (7) Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F. Annu Rev Pharmacol Toxicol 2001, 41, 203-236.
    (8) Posen, G. M.; Tsai, P.; Pou, S. Chem Rev 2002, 102, 1191-1200.
    (9) Bogdan, C. Trends Cell Biol 2001, 11, 66-75.
    (10) Al-Sa'doni, H.; Ferro, A. Clin Sci 2000, 98, 507-520.
    (11) Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. J Biol Chem 1991, 266, 4244-4250.
    (12) Ford, P. C.; Bourassa, J.; Miranda, K.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo, S.; Laverman, L. Coord Chem Rev 1998, 171, 185-202.
    (13) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem Rev 2002, 102, 935-992.
    (14) McCleverty, J. A. Chem Rev 2004, 104, 403-418.
    (15) Vithayathil, A. J.; Ternberg, J. L.; Commoner, B. Nature 1965, 207, 1246-1249.
    (16) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem Rev 2002, 102, 1091-1134.
    (17) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J Biol Chem 1995, 270, 29244-29249.
    (18) Keese MA, Böse M, Mülsch A, Schirmer RH, Becker K. Biochem Pharmacol 1997, 54, 1307-1313.
    (19) Manukhina EB, Malyshev Ilu, Maleniuk EB, Zenina TA, Pokidyshev DA, Mikoian VD, Kubrina LN, Vanin AF Biull Eksp Biol Med 1998, 125, 30-33.
    (20) Litwin, C. M.; Calderwood, S. B. Clin Microbiol Rev. 1993, 6, 137-149.
    (21) Ratledge, C.; Dover, L. G. Annu. Rev. Microbiol. 2000, 54, 881-941.
    (22) Pohl, E.; Haller, J. C.; Mijovilovich, A.; Meyer-Klaucke, W.; Garman, E.; Vasil, M. L. Mol Microbiol. 2003, 47, 903-915.
    (23) Touati, D. Arch Biochem Biophys. 2000, 373, 1-6.
    (24) Hantke, K. Curr Opin Microbiol. 2001, 4, 172-177.
    (25) Neilands, J. B. Annu Rev Biochem. 1981, 50, 715-731.
    (26) Neilands, J. B. J Biol Chem. 1995, 270, 26723-26726.
    (27) Ernst, J. F.; Bennett, R. L.; Rothfield, L. I. J. Bacteriol. 1978, 135, 928-34.
    (28) Hantke, K. Mol Gen Genet. 1981, 182, 288-292.
    (29) Schaffer, S.; Hantke, K.; Braun, V. Mol Gen Genet. 1985, 200, 110-113.
    (30) Neilands, J. B. Biochemistry 1987, 26, 5471-5477.
    (31) Adrait A, Jacquamet L, Le Pape L, Gonzalez de Peredo A, Aberdam D, Hazemann JL, Latour JM, Michaud-Soret I. Biochemistry 1999, 38, 6248-6260.
    (32) Wee, S., J. B. Neilands Biol Metals 1988, 1, 62-68.
    (33) Jin-Won Lee , J. D. H. Biometals 2007, 20, 485-499.
    (34) Coy, M.; Neilands, J. B. Biochemistry 1991, 30, 8201-8210.
    (35) Stojiljkovic I, Hantke K. Mol Gen Genet. 1995, 247, 199-205.
    (36) Jacquamet, L.; Dole, F. o.; Jeandey, C.; Oddou, J.-L.; Perret, E.; Le Pape, L.; Aberdam, D.; Hazemann, J.-L.; Michaud-Soret, I.; Latour, J.-M. J. Am. Chem. Soc. 1999, 122, 394-395.
    (37) Katigbak J, Zhang Y. J Phys Chem Lett. 2012, 3, 3503-3508.
    (38) Jacquamet L, Aberdam D, Adrait A, Hazemann JL, Latour JM, Michaud-Soret I. Biochemistry 1998, 37, 2564-2571.
    (39) Pecqueur L, D'Autréaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B. J. Biol. Chem. 2006, 281, 21286-95.
    (40) Taylor, G. L. Molecular Microbiology 2009, 72, 1208–1220.
    (41) D'Autreaux B, Touati D, Bersch B, Latour JM, Michaud-Soret I. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16619–16624.
    (42) D'Autréaux B, Horner O, Oddou JL, Jeandey C, Gambarelli S, Berthomieu C, Latour JM, Michaud-Soret I. J Am Chem Soc. 2004, 126, 6005-6016.
    (43) Hashemi Shabestari, M. Spin-label EPR on disordered and amyloid proteins; Department of Molecular Physics/Molecular Nano Optics and Spins (MoNOS), Leiden Institute of Physics (LION), Faculty of Science, Leiden University, 2013.
    (44) Ding, H. D., B. Proc Natl Acad Sci 2000, 97, 5146-5150.
    (45) Kuprusevicius E, White G, Oganesyan VS. Faraday Discuss. 2011, 148, 283-98.
    (46) Ledala N, Pearson SL, Wilkinson BJ, Jayaswal RK. Microbiology 2007, 153, 1103–1111.
    (47) Beinert H, Kiley PJ. Curr Opin Chem Biol. 1999, 3, 152-157.
    (48) Greenfield NJ. Nat Protoc. 2006, 1, 2876-2890.
    (49) Zhang F, Chen Y, Kweon DH, Kim CS, Shin YK. J Biol Chem. 2002, 277, 24294-24298.
    (50) Lu TT, Lai SH, Li YW, Hsu IJ, Jang LY, Lee JF, Chen IC, Liaw WF. Inorg Chem. 2011, 50, 5396-5406.
    (51) Yeh, S.-W.; Lin, C.-W.; Li, Y.-W.; Hsu, I. J.; Chen, C.-H.; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F. Inorg Chem. 2012, 51, 4076-4087.

    下載圖示 校內:2016-08-20公開
    校外:2016-08-20公開
    QR CODE