| 研究生: |
洪品 Hung, Pin-Kun |
|---|---|
| 論文名稱: |
利用電鍍技術製備太陽電池應用之硒化銅銦薄膜與硒化銅銦奈米線之研究 Investigation of CuInSe2 thin films and CuInSe2 nanowire arrays prepared by using electrodeposition technology for solar cell applications |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 電沉積技術 、硒化銅銦薄膜太陽能電池 、奈米線陣列 、二次相 、陽極氧化鋁 、添加劑 、十二烷基硫酸鈉 、二甲基亞碸: 成核機制 |
| 外文關鍵詞: | electrodeposition technique, CuInSe2 thin film solar cells, nanowire arrays, secondary phases, anodized aluminum oxide (AAO), additive, Sodium dodecyl sulfate, Dimethyl sulfoxide, nucleation mechanism |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用電沉積技術製備硒化銅銦薄膜與一維硒化銅銦奈米線結構。使用電沉積技術製備硒化銅銦前驅膜容易導致前驅膜之表面過於粗糙或是大量二次相存在於薄膜中。若前驅膜表面過於粗糙,會使得後續緩衝層硫化鎘(CdS)不易披覆於硒化銅銦薄膜上,導致漏電流增加,影響元件轉換效率。由於二次相是屬高導電材料,因此在電沉積過程中,若產生大量之二次相存在於薄膜內部或表面,會形成並聯路徑,降低元件之效率。因此,為了降低前驅膜表面粗糙度與降低電鍍過程中二次相之形成,本論文藉由調整電鍍液中的銅濃度與添加劑的使用分別降低前驅膜之粗糙度與抑制二次相於電鍍過程之生成。然而,由於使用電鍍技術製備硒化銅銦薄膜有較差之結晶品質,故需藉由熱回火製程提升前驅膜之結晶品質。前驅薄膜被熱回火處理於硒氣氛環境下450°C後製作成太陽能電池,其元件結構為Al/AZO/i-ZnO/CdS/CuInSe2/Mo,可得元件之轉換效率達2.51%。另外,本論文亦藉由電鍍技術搭配陽極氧化鋁模板之輔助製備接近化學劑量比之硒化銅銦奈米線陣列,並討論其添加劑對於硒化銅銦奈米線成長機制的影響。
該論文主要可分成四個部分,分別為:(1)研究電鍍液之銅離子濃度對於硒化銅銦前驅膜之微結構與成核機制的影響。(2) 研究添加劑-十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)對於硒化銅銦前驅膜之表面形貌與成核機制之影響。(3)研究十二烷基硫酸鈉對於金屬離子的電化學行為與抑制二次相之生成。(4)研究添加劑-二甲基亞碸(DMSO)對於硒化銅銦奈米線之成長機制。
In this dissertation, CuInSe2 thin film and one-dimensional (1D) CuInSe2 nanowire arrays were fabricated by using electrodepostion technology. Using electrodeposition to fabricate CuInSe2 thin films involves some critical problems in the surface morphology, and the secondary phase contents of the precursor films. In general, the surface morphology of electrodeposited films is roughness. Such film morphology is an obstacle a flawless junction of the CuInSe2 film with the buffer layer (CdS). Therefore, shunting effects may occur between the CuInSe2/CdS interface, leading to decreased efficiency of the photovoltaic cells. Using the electrodeposition technique to fabricate CuInSe2 films generally causes undesirable secondary phases to occur, such as CuxSey. These phases are difficult to control during the electrodeposition process and are high-conductivity phases. Excess secondary phases that occur in CuInSe2 films can produce shunt paths and reduce the efficiency of devices. Therefore, the aim of this dissertation is to reduce the surface roughness of precursor films and formation of secondary phases during the electrodeposition process by adjusting the experiment parameters such as Cu concentration in the electrolyte and usage of additive (Sodium dodecyl sulfate (SDS)). The adjustment of these parameters can improve efficiently the surface morphology of precursor films and suppress the formation of secondary phases. However, it is well known that the electrodeposited precursor films have the poor crystalline quality and this problem can affect significantly the performance of devices. Therefore, these precursor films have to undergo the post-treatment such as annealing process, which can improve significantly the crystallinity of precursor films. Finally, the CuInSe2 solar cells comprising an Al/AZO/i-ZnO/CdS/CuInSe2/Mo/Glass structure were fabricated and exhibited a conversion efficiency of 2.51%.
In addition, we successfully fabricated near stoichiometric CuInSe2 nanowire arrays in a novel acidic Dimethyl sulfoxide (DMSO)-aqueous electrolyte using electrodeposition technique with the assistance of an anodized aluminum oxide (AAO) template and investigated the effects of DMSO additive on the composition and crystallization of CuInSe2 nanowires.
This dissertation can be divided into four segments and described as follow:
i. Investigate the microstructure and the nucleation mechanism of CuInSe2 precursor films by adjusting the Cu concentration in the electrolyte.
ii. Investigate the effect of SDS on the surface morphology and nucleation mechanism of CuInSe2 precursor films.
iii. Investigate the electrochemistry behavior of metal ions and suppress the formation of secondary phases with SDS additive.
iv. Investigate the growth mechanism of CuInSe2 nanowires in the AAO templates by using the DMSO additive.
[1] J. Zhao, A. Wang, M. A. Green and F. Ferraza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett., Vol. 73, pp. 1991-1993, 1998.
[2] D. L. King, W. K. Shubert and T. D. Hund, “World's first 15%-efficient multicrystalline silicon modules”, Conference Record: 1st World Conference on Solar Energy Conversion, Hawaii, pp. 1600-1662, 1994.
[3] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, ‘‘New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%’’, Prog. Photovoltaics Res. Appl., Vol. 19, pp. 894-897, 2011.
[4] MiaSole press Release, MiaSole, Dec. 2, 2010.
[5] S. B. Zhang, S. H. Wei, A. Zunger, and H. K. Yoshida, ‘‘Defect physics of the CuInSe2 chalcopyrite semiconductor’’, Phys. Rev. B, Vol. 57, pp. 9642-9656, 1998.
[6] R. N. Bhattacharya, Y. Kim, S. Yoon, M. Jeon, ‘‘Electrodeposited CIS and CIGS-based Solar Cells’’, ECS Trans., Vol. 50, pp. 23-30, 2013.
[7] J. L. Xu, X. F. Yao, J. Y. Feng, ‘‘The influence of the vacuum annealing process on electrodeposited CuInSe2 films’’, Sol. Energy Mater. Sol. Cells, Vol. 73, pp.203-208, 2002.
[8] X. Donglin, X. Man, L. Jianzhuang, Z. Xiujian, ‘‘Co-electrodeposition and characterization of Cu (In, Ga) Se2 thin films’’, J. Mater. Sci., Vol. 41, pp. 1875-1878, 2006.
[9] L. Ribeaucourt, E. Chassaing, G. Savidand, and D. Lincot, ‘‘One-step electrodeposited Cu-In-Ga thin films and Cu (In, Ga) Se2 absorber synthesis for solar cells ’’, ECS Trans., Vol. 25, pp. 3-11, 2010.
[10] A. Duchatelet, G. Savidand, R. N. Vannier, E. Chassaing, and D. Lincot, ‘‘A new deposition process for Cu (In, Ga)(S, Se)2 solar cells by one-step electrodeposition of mixed oxide precursor films and thermochemical reduction’’, J. Renewable Sustainable Energy, Vol. 5, pp. 011203-1-6, 2013.
[11] M. E. Calixto, K. D. Dobson, B. E. McCandless, and R. W. Birkmire, ‘‘Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application’’,J. Electrochem. Soc., Vol. 153, pp. G521-G528, 2006.
[12] O. Ramdani, J. F. Guillemoles, D. Lincot, P. P. Grand, E. Chassaing, O. Kerrec, E. Rzepka, ‘‘One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy’’, Thin Solid Films, Vol. 515, pp. 5909-5912, 2007.
[13] Z. Zhang, J. Li, M. Wang, M. Wei, G. Jiang, C. Zhu,’’ Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films’’, Solid State Commun., Vol. 150, pp. 2346-2349 , 2010.
[14] L. Wan, Y. Cao, and D. Wang, ‘‘P-type CuInSe2 thin films prepared by selenization of one-step electrodeposited precursors’’, J. Mater. Res., Vol. 24, pp.2293-2300, 2009.
[15] A. M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M. E. Calixto,P. J. Sebastian, C. H. Marshall, and T. J. Gillespie. “Deposition of smooth Cu(In,Ga)Se2 films from binary multilayers”, Thin Solid Films, Vol. 74-78, pp. 361-362, 2000.
[16] A. M. Fernandez, M. E. Calixto, P. J. Sebastian, S. A. Gamboa, A. M. Hermann, R.N. Noufi, ‘‘Electrodeposited and selenized (CuInSe2) (CIS) thin films for photovoltaic applications’’, Sol. Energy Mater. Sol. Cells, Vol. 52, pp. 423- 431, 1998.
[17] C. Guillen and J. Herrero. “Improved selenization procedure to obtain CulnSe2 thin films from sequentially electrodeposited precursors”, J. Electrochem. Soc., Vol. 143, pp. 493-498, 1996.
[18] C. Guillen and J. Herrero., “Improved selenization procedure to obtain CulnSe2 thin films from sequentially electrodeposited precursors”, J. Electrochem. Soc., Vol. 143, pp. 493-498, 1996.
[19] J. Fischer, S. Siebentritt, and P. J. Dale, “Synthesis and Characterization of CuInSe2 Thin Films by Annealing of Electrodeposited In2Se3/Cu and In2Se3/CuxSey Stacks”, ECS Trans., Vol. 25, pp. 129-142, 2010.
[20] R. Krishnan, D. Wood, V. U. Chaudhari, E. A. Payzant, R. Noufi, S. Rozeveld, W. K. Kim and T. J. Anderson, “Reaction routes for the synthesis of CuInSe2 using bilayer compound precursors”, Prog. Photovolt: Res. Appl., Vol. 20, pp. 543-556, 2012.
[21] J. Koo, S. C. Kim, H. Park, W. K. Kim, “Cu(InGa)Se2 thin film photovoltaic absorber formation by rapid thermal annealing of binary stacked precursors ”,Thin Solid Films, Vol. 520, pp. 1484-1488 , 2011.
[22] M. E. Calixto and P. J. Sebastian. “CuInSe2 thin films formed by selenization of Cu–In precursors”, J. mater. Sci., Vol. 33, pp. 339-345, 1998.
[23] S. H. Wei, S. B. Zhang, and A. Zunger, ‘‘Effects of Na on the electrical and structural properties of CuInSe2’’,J. Appl. Phys., Vol. 85, pp. 7214 - 7218, 1999.
[24] M. B. Zellner, R. W. Birkmire, E. Eser, W. N. Shafarman and J. G. Chen, ‘‘Determination of activation barriers for the diffusion of sodium through CIGS thin‐film solar cells’ ’, Prog. Photovolt: Res. Appl., Vol. 11, pp. 543-548, 2003.
[25] V. Lyahovitskaya, Y. Feldman, K. Gartsman, H. Cohen, C. Cytermann, and David Cahen, ‘‘Na effects on CuInSe2: distinguishing bulk from surface phenomena’’, J. Appl. Phys., Vol. 91, pp. 4205-4212, 2002.
[26] T. Watanabe, H. Nakazawa, M. Matsui, H. Ohbo, T. Nakada, ‘‘The influence of sodium on the properties of CuInSe2 thin films and solar cells’’, Sol. Energy Mater. Sol. Cells, Vol. 49, pp. 357-363, 1997.
[27] B. M. Basol, V. K. Kapur, C. R. Leidholm, A. Halani, K. Gledhill, “Flexible and light weight copper indium diselenide solar cells on polyimide substrates”, Sol. Energy Mater. Sol. Cells, Vol. 43, pp. 93-98, 1996.
[28] A. N. Tiwari, M. Krejci, F. J. Haug, H. Zogg, “12.8% efficiency Cu(In,Ga)Se2 solar cell on a flexible polymer sheet”, Prog.Photovolt.:Res.Appl., Vol. 7, pp. 393-397 , 1997.
[29] G. M. Hanket, U. P. Singh, E. Eser, W. N. Shafarman, R. W. Birkmire, “Pilot-scale manufacture of Cu(InGa)Se2 films on a flexible polymer substrate”, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, pp.567-570, 2002.
[30] K. Herz, F. Kessler, R. Wachter, M. Powalla, J. Schneider, A. Schulz, U. Schumacher, “Dielectric barriers for flexible CIGS solar modules”, Thin Solid Films, Vol. 403-404, pp. 384-389 , 2002.
[31] S. Ishizuka, A. Yamada, P. Fons, S. Niki, “Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material”, J. Renew. Sustain. Energy, Vol. 1, pp. 013102-1-8, 2008.
[32] C. Y. Shi, Y. Sun, Q. He, F. Y. Li, J. C. Zhao, “Cu(In,Ga)Se2 solar cells on stainless- steel substrates covered with ZnO diffusion barriers”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 654-656, 2009.
[33] M. E. Calixto, P. J. Sebastian, R. N. Bhattacharya, R. Nou, ‘‘Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition’’, Sol. Energy Mater. Sol. Cells, Vol. 59, pp. 75-84, 1999.
[34] A. M. Fernandeza, R. N. Bhattacharya, ‘‘Electrodeposition of CuIn1−xGaxSe2 precursor films: optimization of film composition and morphology’’ Thin Solid Films, Vol. 474, pp. 10-13, 2005.
[35] R. N. Bhattacharya, A. M. Fernandez, ‘‘CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited precursor films’’, Sol. Energy Mater. Sol. Cells, Vol. 76, pp. 331–337, 2003.
[36] Y. Oda, M. Matsubayashi, T. Minemoto, H. Takakura, ‘‘Crystallization of In–Se/CuInSe2 thin-film stack by sequential electrodeposition and annealing’’, J. Crys. Growth, Vol. 311, pp. 738-741, 2009.
[37] M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva, A. Tiwari, ‘‘Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors’’, Thin Solid Films, Vol. 511-512, pp. 325, 2006.
[38] F. Kang, J. Ao, G. Sun, Q. He, Y. Sun, Curr. ‘‘Properties of CuInxGa1−xSe2 thin films grown from electrodeposited precursors with different levels of selenium content’’, Curr. Appl. Phys., Vol. 10, pp. 886-888, 2010.
[39] M. Benaicha, N. Benouattas, C. Benazzouz, L. Ouahab, ‘‘Effect of bath temperature and annealing on the formation of CuInSe2’’, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 262-266, 2009.
[40] X. Donglin, L. Jangzhuang, X. Man, Z. Xiujian, ‘‘Electrodeposited and selenized CIGS thin films for solar cells’’, J. Non-Cryst. Solids, Vol. 354, pp. 1447-1450, 2008.
[41] J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot,‘‘One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure’’, J. Appl. Phys., Vol. 79, pp. 7293-7299, 1996.
[42] S. H. Kang, Y. K. Kim, D. S. Choi, Y. E. Sung, ‘‘Characterization of electrodeposited CuInSe2 (CIS) film’’, Electrochim. Acta, Vol. 51, pp. 4433-4438, 2006.
[43] D. Appell, ‘‘Nanotechnology: wired for success’’, Nature, Vol. 419, pp. 553-555, 2002.
[44] H. A. Atwater and A. Polman, ‘‘Plasmonics for improved photovoltaic devices’’, Nature Mater., Vol. 9, pp. 205-213, 2010.
[45] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L.Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, ‘‘Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications’’, Nature Mater., Vol. 9, pp. 239-244, 2010.
[46] C. L. Hsin, W. F. Lee, C. T. Huang, C. W. Huang, W. W. Wu and L. J. Chen, ‘‘Growth of CuInSe2 and In2Se3/CuInSe2 nano-heterostructures through solid state reactions’’, Nano Lett., Vol. 11, pp. 4348-4351, 2011.
[47] L. J. Chen, J. D. Liao, Y. J. Chuang and Y. S. Fu, ‘‘Synthesis and Characterization of Cu(InxB1−x)Se2 Nanocrystals for Low-Cost Thin Film Photovoltaics’’, J. Am. Chem. Soc., Vol. 133, pp. 3704-3707, 2011.
[48] W. C. Kwak, S. H. Han, T. G. Kim and Y. M. Sung, ‘‘Electrodeposition of Cu (In, Ga) Se2 crystals on high-density CdS nanowire arrays for photovoltaic applications’’, Cryst. Growth Des., Vol. 10, pp. 5297-5301, 2010.
[49] J. M. Spurgeon, H. A. Atwater and N. S. Lewis, ‘‘A comparison between the behavior of nanorod array and planar Cd (Se, Te) photoelectrodes’’, J. Phys. Chem. C., Vol. 112, pp. 6186-6193, 2008.
[50] C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, Jenh-Yih Juang, H. C. Kuo, C. H. Lai, L. J. Chen, and Y. L. Chueh, ‘‘Large Scale Single-Crystal Cu(In,Ga)Se2 Nanotip Arrays For High Efficiency Solar Cell’’, Nano Lett., Vol. 11, pp. 4443-4448, 2011.
[51] J. Chen, H. Ye, L. Ae, Y. Tang, D. Kieven , T. Rissom, J. Neuendorf and M. C. Lux-Steiner, ‘‘Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications’’, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 1437-1440, 2011.
[52] B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho and J. M. Myoung, ‘‘Bottom-up grown ZnO nanorods for an anti reflective moth-eye structure on CuInGaSe2 solar cells’’, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2650-2654, 2011.
[53] D. Grujicic, B. Pesic, ‘‘Electrodeposition of copper: the nucleation mechanisms’’, Electrochim. Acta, Vol. 47, pp. 2901-2912, 2002.
[54] P. P. Prosini, M. L. Addonizio, A. Antonaia, ‘‘Effect of substrate surface treatment on the nucleation and crystal growth of electrodeposited copper and copper–indium alloys’’, Thin Solid Films, Vol. 298, pp. 191-196, 1997.
[55] D. Grujicic, B. Pesic, ‘‘Electrodeposition of copper: the nucleation mechanisms’’, Electrochim. Acta, Vol. 47, pp. 2901-2912, 2002.
[56] O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, ‘Electrodeposition of Copper Thin Film on Ruthenium A Potential Diffusion Barrier for Cu Interconnects’’, J. Electrochem. Soc., Vol. 150, pp. C347-C350, 2003.
[57] R. C. Valderrama , M. Miranda-Hernandez , P. J. Sebastian , A. L. Ocampo, ‘‘Electrodeposition of indium onto Mo/Cu for the deposition of Cu (In, Ga) Se2 thin films’’, Electrochim. Acta, Vol. 53, pp. 3714-3721, 2008.
[58] A. Kelaidopoulou , G. Kokkinidis, A. Milchev, J. Electroanal. Chem., Vol. 444, pp. 195-201, 1998.
[59] Y. Lai, F. Liu, J. Li, Z. Zhang, Y. Liu, ‘‘Nucleation and growth of metal catalysts. Part I. Electrodeposition of platinum on tungsten’’, J. Electroanal. Chem., Vol. 639, pp. 187-192, 2010.
[60] D. Tang, J. Yang, F. Liu, Y. Lai, J. Li , Y. Liu, ‘‘Growth and characterization of CuSbSe2 thin films prepared by electrodeposition’’, Electrochim. Acta, Vol. 76, pp. 480-486, 2012.
[61] M. H. Valdes, M. Vazquez, ‘‘Pulsed electrodeposition of p-type CuInSe2 thin films’’, Electrochim. Acta, Vol. 56, pp. 6866-6873, 2011.
[62] H. Ye, H. S. Park, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, B. A. Korgel, and A. J. Bard, ‘‘Photoelectrochemical Characterization of CuInSe2 and Cu(In1−xGax)Se2 Thin Films for Solar Cells’’, J. Phys. Chem. C, Vol. 115, pp. 234-240, 2011.
[63] D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, “Fabrication of Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks”, Adv. Mater., Vol. 12, pp. 1252-1257, 2000.
[64] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys., Vol. 84, pp. 6023-6026, 1998.
[65] H. Masuda, K. Yada, and A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution”, Jpn. J. Appl. Phys., Vol. 37, pp. L1340-L1342, 1998.
[66] H. Masuda, K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, Vol. 268, pp. 1466-14681, 1995.
[67] H. Masuda, F. Hasegwa, and S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, J. Electro. Soc., Vol. 144, pp. L127-L130, 1997.
[68] A. L. Friedman, D. Brittain, and L. Menon, “Roles of pH and acid type in the anodic growth of porous alumina”, J. Chem. Phys., Vol. 127, pp. 154717-1-7, 2007.
[69] G. D. Sulka, K. G. Parkoła, “Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid”, Electrochim. Acta, Vol. 52, pp. 1880-1888, 2007.
[70] S. Ono, M. Saito, M. Ishiguro, H. Asoh, “Controlling factor of self-ordering self-ordering of anodic porous alumina”, J. Electro. Soc., Vol. 151, pp. B473-B478, 2004.
[71] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminum”, J. Phys. D: Appl. Phys., Vol. 25, pp 1258-1263, 1992.
[72] F. Li, L. Zhang, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater., Vol. 10, pp. 2470-2480, 1998.
[73] O. Jessensky, F. Muller, and U. Gosele, “Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Appl. Phys. Lett., Vol. 72, pp. 1173-1175, 1998.
[74] J. P. OSullivan, and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum” , Proc. R. Soc., Vol. A. 317, pp. 511-543, 1970.
[75] K. Ebihara, H. Takahashi, and M. Nagayama, “Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions”, J. Met. Finish. Soc. Jpn., Vol. 34, pp. 548-553, 1983.
[76] S. M. Sze, “Semiconductor Devices Physics and Technology”, Wiley, New Yourk, Section 9.5 Solar Cell, pp. 318-328, 1986.
[77] M. E. Calixto, K. D. Dobson, B. E. McCandless, R. W. Birkmire, “Controlling growth chemistry and morphology of single-bath electrodeposited Cu (In, Ga) Se2 thin films for photovoltaic application’’, J. Electrochem. Soc., Vol. 153, pp. G521-G528, 2006.
[78] J. Noolandi, ‘‘Theory of crystal distortions in AIIBIVC2V and AIBIIIC2VI chalcopyrite semiconductors’’, Phys. Rev. B, Vol, 10, pp. 2490-2494, 1974.
[79] C. Rincon, F. J. Ramirez, ‘‘Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry’’, J. Appl. Phys., Vol. 72, pp. 4321-4324, 1992.
[80] V. I. Roca, J. A. Garcia, L. C. Barrio, A. P. Rodriguez, J. R. Morante, V. Bermudez, O. Ramdani, P.P. Grandd, O. Kerrec, ‘‘Raman scattering characterisation of electrochemical growth of CuInSe2 nanocrystalline thin films for photovoltaic applications: Surface and in‐depth analysis’’, Surf. Interface Anal., Vol. 40, pp. 798-801, 2008.
[81] F. Cerdeira, C. J. Buchenauer, F. H. Pollak, M. Cardona, ‘‘Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors’’, Phys. Rev. B, Vol. 5, pp. 580-593, 1972.
[82] V. I. Roca, X. Fontane, J. A. Garcia, L. C. Barrio, A. P. Rodriguez, J. R. Morante, J. S. Jaime-Ferrer, E. Saucedo, P.P Grand, V. Bermudez, ‘‘Electrodeposition based synthesis of S-rich CuIn(S,Se)2 layers for photovoltaic applications: Raman scattering analysis of electrodeposited CuInSe2 precursors’’, Thin Solid Films, Vol. 517, pp. 2163-2166 , 2009.
[83] S. H. Wei, S. B. Zhang, A. Zunger, ‘‘Band structure and stability of zinc-blende-based semiconductor polytypes ’’, Phys. Rev. B, Vol. 59 pp. R2478-R2481, 1999.
[84] B. J. Stanbery, S. Kincal, S. Kim, C. H. Chang, S. P. Ahrenkiel, G. Lippold, H. Neumann, T. J. Anderson, O. D. Crisalle, ‘‘Epitaxial growth and characterization of CuInSe2 crystallographic polytypes’’, J. Appl. Phys., Vol. 91, pp. 3598-3604, 2002.
[85] M. j. Siegfried, K. S. Choi, ‘‘Electrochemical crystallization of cuprous oxide with systematic shape evolution’’, Adv. Mater., Vol. 16, pp. 1743-1746 , 2004.
[86] C. J. Huang, T. H. Meen, M. Y. Lai, W. R. Chen, ‘‘Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique’’, Sol. Energy Mater. Sol. Cells, Vol. 82, pp. 553-565 ,2004.
[87] M. J. Jeng, W. K. Lei, ‘‘Electrodeposition of Copper-Indium-Diselenide (CuInSe2) Thin Films’’, Adv. Mater. Res., Vol. 214, pp. 378-382, 2011.
[88] H.M. Pathan, C.D. Lokhande, ‘‘Chemical deposition and characterization of copper indium diselenide (CISe) thin films’’, Appl. Surf. Sci., Vol. 245, pp. 328-334, 2005.
[89] J. Yang, Z. Jin, C. Li, W. Wang, Y. Chai, ‘‘Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes’’,Electrochem. Commun., Vol. 11, pp. 711-714, 2009.
[90] J. Yang, Z. Jin, Y. Chai, H. Du, T. Liu, T. Wang, ‘‘Growth and characterization of CuInSe2 thin films prepared by successive ionic layer adsorption and reaction method with different deposition temperatures’’, Thin Solid Films, Vol. 517, pp. 6617-6622 , 2009.
[91] T. J. Whang, M. T. Hsieh, Y. C. Kao, ‘‘Studies of single-step electrodeposition of CuInSe2 thin films with sodium citrate as a complexing agent’’, Appl. Surf. Sci., Vol. 257, pp. 1457-1462, 2010.
[92] Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, ‘‘Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films’’, Electrochim. Acta, Vol. 54, pp. 3004-3010, 2009.
[93] S. Massaccesi, S. Sanchez, J. Vedel, ‘‘Electrodeposition of indium selenide In2Se3’’, J. Electroanal. Chem., Vol. 412, pp. 95-101, 1996.
[94] R. Elansezhian, B. Ramamoorthy, P. K. Nair, ‘‘The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni–P deposits’’, j. mater. Process. Technol., Vol. 209, pp. 233-240, 2009.
[95] J. Yang, Z. Jin, C. Li, T. Wang, T. Liu, ‘‘Electrodeposition of CuInSe2 films by an alternating double-potentiostatic method using nearly neutral electrolytes’’, Electrochem. Commun., Vol. 11, pp. 711-714, 2009.
[96] S. Y. Moon, T. Kusunose, T. Sekino, ‘‘CTAB-assisted synthesis of size-and shape-controlled gold nanoparticles in SDS aqueous solution’’, Mater. Lett., Vol. 63, pp. 2038-2040, 2009.
[97] C. L. Lee, Y. C. Ju, P. T. Chou, Y. C. Huang, ‘‘Preparation of Pt nanoparticles on carbon nanotubes and graphitenanofibers via self-regulated reduction of surfactants and theirapplication as electrochemical catalyst’’, Electrochem. Commun., Vol. 7, pp. 453-458, 2005.
[98] R. Guo, T. Liu, X. Wei, ‘‘Effects of SDS and some alcohols on the inhibition efficiency of corrosion for nickel’’, Colloids and Surf. A, Vol. 209, pp. 37-45, 2002.
[99] A. Gomes, M.I. da Silva Pereira, ‘‘Pulsed electrodeposition of Zn in the presence of surfactants’’, Electrochim. Acta, Vol. 51, pp. 1342-1350 , 2006.
[100] E. Michaelis, D. W. hrle, J. Rathousky, M. Wark, ‘‘Electrodeposition of porous zinc oxide electrodes in the presence of sodium laurylsulfate’’, Thin Solid Films, Vol. 497, pp. 163-169, 2006.
[101] M. A. Ghanem, P. N. Bartlett, P. D. Groot, A. Zhukov, ‘‘A double templated electrodeposition method for the fabrication of arrays of metal nanodots’’, Electrochem. Commun., Vol. 6, pp. 447-453, 2004.
[102] E.J. Wanless, W.A. Ducker, ‘‘Organization of sodium dodecyl sulfate at the graphite-solution interface’’, J. Phys. Chem., Vol. 100, pp. 3207-3214, 1996.
[103] J.F. Liu, W.A. Ducker, ‘‘Surface-induced phase behavior of alkyltrimethylammonium bromide surfactants adsorbed to mica, silica, and graphite’’, J. Phys. Chem. B, Vol. 103, pp. 8558-8567, 1999.
[104] M. Jaschke, H.J. Butt, H.E. Gaub, S. Manne, ‘‘Surfactant aggregates at a metal surface’’, Langmuir, Vol. 13, pp. 1381-1384, 1997.
[105] X. Fontane, V. I. Roca, L.C. Barrio, J.A. Garcia, A.P. Rodriguez, J.R. Morante, W. Witte, ‘‘In-depth resolved Raman scattering analysis of secondary phases in Cu-poor CuInSe2 based thin films’’, Appl. Phys. Lett., Vol. 95, pp. 121907-1-3, 2009.
[106] D. Wang, L. Wan, Z. Bai, Y. Cao, ‘‘Mixed phases in p -type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy’’, Appl. Phys. Lett., Vol. 92, pp. 211912-1-3, 2008.
[107] J. Yang, F. Liu, Y. Lai, J. Li, Y. Liu, ‘‘Photoelectrochemical Deposition of CuInSe2 Thin Films’’, Electrochem. Solid-State Lett., Vol. 15, pp. D19-D21, 2012.
[108] Y.P. Fu, R.W. You, and K.K. Lew, ‘‘CuIn1 − xGaxSe2 Absorber Layer Fabricated by Pulse-Reverse Electrodeposition Technique for Thin Films Solar Cell’’, J. Electrochem. Soc., Vol. 156, pp. D553-D557, 2009.
[109] L. M. Abrantes, L. V. Araujo and M. D. Levi, ‘‘Voltammetric studies on copper deposition/dissolution reactions in aqueous chloride solutions’’, Miner. Eng., Vol. 8, pp. 1467-1475, 1995.
[110] M. Zhou, N. Myung, X. Chen and K. Rajeshwar, ‘‘Electrochemical deposition and stripping of copper, nickel and copper nickel alloy thin films at a polycrystalline gold surface: a combined voltammetry-coulometry-electrochemical quartz crystal microgravimetry study’’, J. Electroanal. Chem. Vol. 398, pp. 5-12, 1995.
[111] B. M. Huang, T. E. Lister and J. L. Stickney, ‘‘Se adlattices formed on Au(100), studies by LEED, AES, STM and electrochemistry’’, Surf. Sci. Vol. 392, pp. 27-43, 1997.
[112] D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, ‘‘Chalcopyrite thin film solar cells by electrodeposition’’, Sol. Energy, Vol. 77, pp. 725-737, 2004.
[113] J. Kois, O. Volobujeva and S. Bereznev, ‘‘One-step electrochemical deposition of CuInSe2 absorber layers’’, phys. stat. sol. (c), Vol. 5, pp. 3441-3444, 2008.
[114] Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, ‘‘Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films’’, Electrochim. Acta, Vol. 54, pp. 3004-3010, 2009.
[115] J. A. Groenink, P. H. Janse, ‘‘A Generalized Approach to the Defect Chemistry of Ternary Compounds’’, Z. Phys. Chem. NF, Vol. 110, pp. 17-28, 1978.
[116] C. Rincon and F. J. Ramirez, ‘‘Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry’’, J. Appl. Phys., Vol. 72, pp. 4321-4324, 1992.
[117] J.I. Pankove, Optical processes in semiconductors, Dover, New York, 1976)
[118] S. H. Kang, Y. K. Kim, D. S. Choi, Y. E. Sung, ‘‘Characterization of electrodeposited CuInSe2 (CIS) film’’, Electrochim. Acta, Vol. 51, pp. 4433-4438, 2006.
[119] M. Valdes, M. Vazquez, ‘‘Composition, morphology, and optical properties of CuInSe2 thin films electrodeposited using constant and pulsed potentials’’, J. Solid State Electrochem., Vol. 16, pp. 3825-3835, 2012.
[120] J. Tuttle, D. Albin, J. Goral, C. Kennedy and R. Noufi, ‘‘Effects of composition and substrate temperature on the electro-optical properties of thin-film CuInSe2 and CuGaSe2’’, Sol Cells, Vol. 24, pp. 67-79, 1988.
[121] H. Neumann, ‘‘Optical properties and electronic band structure of CuInSe2’’, Sol. Cells, Vol. 16, pp. 317-333, 1986.
[122] C. Sene, M. Estela Calixto, Kevin D. Dobson, Robert W. Birkmire, ‘‘Electrodeposition of CuInSe2 absorber layers from pH buffered and non-buffered sulfate-based solutions’’, Thin Solid Films, Vol. 516, pp. 2188-2194, 2008.
[123] T. Nakada and A. Kunioka, ‘‘Sequential Sputtering/Selenization Technique for the Growth of CuInSe2 Thin Films’’, jpn. J. Appl. Phys., Vol. 37, pp. L1065-L1067, 1998.
[124] Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, ‘‘Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films’’, Electrochim. Acta, Vol. 54, pp. 3004-3010, 2009.
[125] R. Ugarte, R. Schrebler, R. Cordova, E.A. Dalchiele, H. Gomez, ‘‘Electrodeposition of CuInSe2 thin films in a glycine acid medium’’, Thin Solid Films, Vol. 340, pp. 117-124, 1999.
[126] Y. Lai, J. Liu, J. Yang, B. Wang, F. Liu, Z. Zhang, J. Li and Y. Liu, ‘‘Incorporation Mechanism of Indium and Gallium during Electrodeposition of Cu (In, Ga)Se2 Thin Film’’, J. Electrochem. Soc., Vol. 158, pp. D704-D709, 2011.
[127] S. Beyhan, S. Suzer, F. Kadirgan, ‘‘Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films’’, Sol. Energy Mater. Sol. Cells, Vol. 91 , pp. 1922-1926, 2007.
[128] M. C. F. Oliveira, M. Azevedo and A. Cunha, ‘‘A voltammetric study of the electrodeposition of CuInSe2 in a citrate electrolyte’’, Thin Solid Films, Vol. 405, pp. 129-134, 2002.
[129] C. Rincon and F. J. Ramlrez, ‘‘Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry’’, J. Appl. Phys., Vol. 72, pp. 4321-4324, 1992.
[130] X. Fontane, V. Izquierdo-Roca, L. Calvo-Barrio, J. Alvarez-Garcia, A. Perez-Rodriguez, J. R. Morante and W. Witte, ‘‘In-depth resolved Raman scattering analysis of secondary phases in Cu-poor CuInSe2 based thin films’’, Appl. Phys. Lett., Vol. 95, pp. 121907-1-3, 2009.
[131] D. Wang, L. Wan, Z. Bai and Y. Cao, ‘‘Mixed phases in p-type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy’’, Appl. Phys. Lett., Vol. 92, pp. 211912-1-3, 2008.
[132] E. Chassaing, P. P. Grand, O. Ramdani, J. Vigneron, A. Etcheberry and D. Lincot, ‘‘Electrocrystallization mechanism of Cu–In–Se compounds for solar cell applications’’, J. Electrochem. Soc., Vol. 157, pp. D387-D395, 2010.
[133] J. Weszka, P. h. Daniel, A. Burian, A. M. Burian and A. T. Nguyen, ‘‘Raman scattering in In2Se3 and InSe2 amorphous films’’, J. Non-Cryst. Solids, Vol. 265, pp. 98-104, 2000.
[134] E. A. Bluhm, E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young and G. D. Jarvinen, ‘‘Surface effects on cation transport across porous alumina membranes’’, Langmuir, Vol. 15, pp. 8668-8672, 1999.
[135] R. Redon, A. Vazquez-Olmos, M. E. Mata-Zamora, A. Ordonez-Medrano, F. Rivera-Torres and J. M. Saniger, ‘‘Contact angle studies on anodic porous alumina’’, J. Colloid Interface Sci., Vol. 287, pp. 664-670, 2005.
[136] X. Dou, G. Li and H. Lei, ‘‘Kinetic versus Thermodynamic Control over Growth Process of Electrodeposited Bi/BiSb Superlattice Nanowires’’, Nano Lett., Vol. 8, pp. 1286-1290, 2008.
[137] M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert and J. Vetter, ‘‘Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes’’, Adv. Mater., Vol. 13, pp. 62-65, 2001.
[138] M. Steinhart, J. H. Wendorff and R. B. Wehrspohn, ‘‘Nanotubes a la Carte: Wetting of Porous Templates’’, ChemPhysChem, Vol. 4, pp. 1171-1176, 2003.
[139] M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, New York, p. 108, 1998.
[140] H. Ye, H. S. Park, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, B. A. Korgel, and A. J. Bard, ‘‘Photoelectrochemical Characterization of CuInSe2 and Cu(In1−xGax)Se2 Thin Films for Solar Cells’’, J. Phys. Chem. C, Vol. 115, pp. 234-240, 2011.
[141] J. Sun, C. Sun, S. K. Batabyal, P. D. Tran, S. S. Pramana , L. H. Wong, S. G. Mhaisalkar, ‘‘Morphology and stoichiometry control of hierarchical CuInSe2/SnO2 nanostructures by directed electrochemical assembly for solar energy harvesting’’, Electrochem. Commun., Vol. 15, pp. 18-21, 2012.
[142] Z. J. Li-Kao, N. Naghavi, F. Erfurth, J. F. Guillemoles, I. Gérard, A. Etcheberry, J. L. Pelouard, S. Collin, G. Voorwinden and D. Lincot, ‘‘Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering’’, Prog. Photovolt: Res. Appl., Vol. 20, pp. 582-587, 2012.
[143] H. Sai, H. Fujiwara,M. Kondo, ‘‘Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells’’, Sol. Energy Mater. Sol. Cells, Vol. 93 pp. 1087-1090, 2009.
校內:2024-12-31公開