| 研究生: |
劉彥廷 Liu, Yen-Ting |
|---|---|
| 論文名稱: |
氧化石墨烯應用於離子選擇膜之能量轉換研究 Study of Power Generation Using Nafion/ Graphene Oxide Ion Selectivity Membranes |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 可逆電透析 、奈米孔洞 、離子選擇膜 、吉布斯自由能 、能源轉換 、擴散電流 、擴散電位 、氧化石墨烯 |
| 外文關鍵詞: | Reverse electrodialysis, Nanopore, Ion-exchange membrane, Energy conversion, Grephene oxide |
| 相關次數: | 點閱:69 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水源、糧食和能源危機將是所有人類逐漸要面臨的問題,其中能源危機更是我們首要面對的問題,地球上存在這大量可被開發重複利用的綠色能源,可以透過能量轉換來獲得我們上活中所使用之電能,利用可逆電透析(RED)的方式,將吉布斯自由能轉換成電能。
本研究中使用自製納菲翁(Nafion)薄膜與添加不同比例氧化石墨烯溶液進納菲翁(Nafion)中所製成之薄膜進行研究,其中分別使用四種薄膜進行實驗(純Nafion、Nafion添加300 μL之氧化石墨烯溶液、納菲翁Nafion添加500 μL之氧化石墨烯溶液與Nafion添加700 μL之氧化石墨烯溶液),而電解液使用KCl進行實驗,高濃度端為1000 mM而低濃度端為10 mM,我們量測出四種薄膜所產生之開路電壓與短路電流,並繪製出電流-電壓曲線來求得所能產生之功率,其中轉換效率最高之薄膜為Nafion 20 mL添加500μL之氧化石墨烯溶液所製成之薄膜,最佳擴散電位為80 mV,擴散電流為82 μA,最大功率為:1822.35 nW,因為石墨烯的適量添加使薄膜的表面電荷密度提升,使的薄膜之離子選擇性更佳,所以會獲得更高之輸出功率與轉換效率。
SUMMARY
Human beings are gradually facing water and food supplied shortage and energy crisis. Among them, the energy source is the most critical issue in the present society. There is clean/green energy existing on earth that we can explore. In this study, Gibbs free energy was utilized to convert into electrical energy by means of reverse electrodialysis (RED), in which concentration gradient is set to transport through an ion-selective membrane.
Keywords: Reverse electrodialysis, Nanopore, Ion-exchange membrane, Energy conversion, Grephene oxide
[1] L. Kazmerski, “Renewable & sustainable energy reviews.” U.K:Oxford, 1997.
[2] Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). “A review of the applications of nanofluids in solar energy.” International Journal of Heat and Mass Transfer, 57(2), 582-594..
[3] Ackermann, T., & Söder, L. (2000). “Wind energy technology and current status: a review.” Renewable and sustainable energy reviews, 4(4), 315-374.
[4] Kim, D. K., Duan, C., Chen, Y. F., & Majumdar, A. (2010).” Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. “Microfluidics and Nanofluidics, 9(6), 1215-1224.
[5] “On the Basic Concept of Nano-Technology” Proc. Intl.Conf.Prod.Eng
[6] LeRoy, B. J., Heller, I., Pahilwani, V. K., Dekker, C., & Lemay, S. G. (2007). “Simultaneous electrical transport and scanning tunneling spectroscopy of carbon nanotubes.” Nano letters, 7(10), 2937-2941.
[7] Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). “Ionic selectivity of single nanochannels.” Nano letters, 8(7), 1978-1985.
[8] Weinstein, J. N., & Leitz, F. B. (1976).” Electric power from differences in salinity: the dialytic battery.” Science, 191(4227), 557-559.
[9] Guo, W., Cao, L., Xia, J., Nie, F. Q., Ma, W., Xue, J., Song, Y., Zhu, D., Wang, Y. & Jiang, L. (2010).” Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source.” Advanced functional materials, 20(8), 1339-1344.4.
[10] Isaacs, J. D., & Seymour, R. J. (1973). “The ocean as a power resource.” International Journal of Environmental Studies, 4(1-4), 201-205.
[11] Cao, L., Guo, W., Ma, W., Wang, L., Xia, F., Wang, S. & Zhu, D. (2011). “Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition.” Energy & Environmental Science, 4(6), 2259-2266.
[12] Kim, D. K., Duan, C., Chen, Y. F., & Majumdar, A. (2010). “Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels.” Microfluidics and Nanofluidics, 9(6), 1215-1224.
[13] M. C. Kaifer, Superamolecular Electrochemistry. New York : Wiley-VCH, 1999.
[14] J. Koryta, J. Dvorak, and L. Kavan, Principles of electrochemistry. New York: Wiley, 1993.
[15] Probstein, Ronald F. Physicochemical hydrodynamics: an introduction. John Wiley & Sons, 2005.
[16] Schoch, R. B., Han, J., & Renaud, P. (2008). “Transport phenomena in nanofluidics.” Reviews of modern physics, 80(3), 839.
[17] Haubold, H. G., Vad, T., Jungbluth, H., & Hiller, P. (2001). “Nano structure of NAFION: a SAXS study.” Electrochimica Acta, 46(10), 1559-1563.
[18] Lakshminarayanaiah, N. (1965). “Transport phenomena in artificial membranes.” Chemical reviews, 65(5), 491-565.
[19] Stein, Derek, Maarten Kruithof, and Cees Dekker. “Surface-charge-governed ion transport in nanofluidic channels.” Physical Review Letters 93.3 (2004): 035901.
校內:2022-06-30公開