| 研究生: |
卓慶章 Cho, Ching-Chang |
|---|---|
| 論文名稱: |
考慮滑動邊界影響下微渠道內電滲流流場特性分析 Analysis of Electroosmotic Flow in Microchannels with Slip Boundary Effect |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 電滲流 、zeta電位勢 、滑動效應 、微渠道 |
| 外文關鍵詞: | zeta potential, liquid slip, microchannel, electroosmotic flow |
| 相關次數: | 點閱:96 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文在探討微渠道內邊界滑動效應對電滲流動(electroosmotic flow,EOF)之影響。描述電滲流動的統御方程式包含:(1)Poisson-Boltzmann方程式,用以描述微渠道內電雙層(electric double layer,EDL)電位勢(electric potential)分佈;(2)Laplace方程式,用以描述外加電場電位勢分佈;(3)具電驅動物體力(electrokinetic body force)之Navier-Stokes方程式,用以描述微渠道內速度場分佈。使用的無因次化參數有滑動係數(slip coefficient)α、雷諾數(Reynolds number)Re及電雙層厚度參數(EDL thickness parameter)κ,其中Re數可表示成zeta電位勢與外加電場的強度。藉由數值模擬的方式,我們求解如下應用於微流體晶片的流場型態:
一、平板微渠道(parallel-plate microchannels)
二、T型及十字型微渠道(T-shape and cross-section microchannels)
這裡我們使用Navier滑動邊界修正流體於壁面上的速度,模擬出壁面滑動現象,探討邊界滑動之影響。此外,我們亦探討Re數、κ值對速度、流率及電雙層電勢能之影響。結果顯示,在流場內邊界滑動、zeta電位勢、外加電場及電雙層厚度對電滲流場影響甚大。
The effect of liquid slip on electroosmotic flow(EOF)in microchannels is studied in this paper. The governing equations used to describe electroosmotic flow include:(1)Poisson-Boltzmann equation for the electric field of electric double layer(EDL),(2)Laplace equation for the applied electric field, and(3)Navier-Stokes equations with electrokinetic body force for the velocity field. By using numerical simulation, the influence of the various parameters such as the , the slip coefficient, Re, the Reynolds number characterizing the zeta potential and the applied electrical field, and κ, double-layer thickness parameter, on the flow distribution is investigated. Two researchable subjects which have practical applications in microfluidic chip can be considered as follows:
The first is the electroosmotic flow through microchannels between two parallel plates with boundary slip.
The second is the effect of liquid slip on electroosmotic flow in T-shape and cross-section microchannels.
Here we use Navier slip boundary condition to correct the fluid velocity at fluid-wall interface for the simulation of liquid slip. In addition, the variation of the velocity profile, flow rate, stream contours, and EDL potential with Re and κ are discussed in detail. Results show that liquid slip, zeta potential, applied electrical field, and double-layer thickness have significant influence.
[1]Manz, A., Graber, N. and Widmer, H. M., “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sensors and Actuators B1,224-248(1990)
[2]Tuckermann, D. B., and Pease, R. F. W., “High-performance heat sinks for VLSI,” IEEE Electron Decice Lett.,2,126-129(1981)
[3]Tuckermann, D. B., and Pease, R. F. W., “Optimized convective cooling using micromachined structrues,” J. Electrochem. Soc., 129, c98(1982)
[4]Mala, G. M. and Li, D., “Flow characteristics of water in microtubes,” Int. J. Heat Fluid Flow,20,142-148(1999)
[5]Peng,X. F., Peterson, G. P. and Wang, B. X., “Frictional flow characteristics of water flowing through rectangular microchannel,” Exp. Heat Transfer,7,249-264(1994)
[6]Peng, X. F.,Peterson, G. P. and Wang, B. X., “Heat transfer characteristics of water flowing through microchannel,” Exp. Heat Transfer,7,265-283(1999)
[7]Wang, B. X. and Peng, X. F., “Experimental investigation on liquid forced-convection heat transfer through microchannels,” Int. J. Heat Mass Transferm,37,73-81(1994)
[8]Hunter, Robert J., “Zeta potential in colloid science: principles and applications,” Academic Press, New York(1981)
[9]George Em Karniadakis, Ali Beskok ,”Micro flows: fundamentals and simulation,” Academic Press, New York(2002)
[10]Probstein, Ronald F.,“Physicochemical hydrodynamics an introduction,”Academic Press, New York(1994)
[11]Burgeen, D. and Nakache, F., ”Electrokinetic flow in ultrafine capillary slits,”J. Phys. Chem.,68,1084-1091(1964)
[12]Rice, C. L., Whitehead, R., “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem.,69,4017-4023(1965)
[13]Levine, S., Marriott, J. R., Neale, G. and Epstein, N., “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potential,” Journal of Colloid Science,52,136-149(1975)
[14]Yang, C., Li, D., Masliyah, Jacob H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects ,” Int. J. Heat Mass Transfer, 41,4229-4249(1998)
[15]Yang, C., Li D., “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids Surf. A, 143, 339-353(1998)
[16]Mala, G. M.,Li, D., Dale, J. D., “Heat transfer and fluid flow in microchannels,”Int. J. Heat Mass Transfer,40,3079-3088(1997)
[17]Bowen, W. Richard, Jenner, F., “Electroviscous effects in charged capillaries,” J. Colloid Interface Sci.,173,388-395(1998)
[18]Patankar, N. A.,and Hu, H. H., “Numerical simulation of electroosmotic flow,” Anal. Chem.,70,1870-1881(1998)
[19]Yang, R. J.,Fu, L. M., and Hwang ,C. C., “Electroosmotic entry flow in a microchannel,” J. Colloid Interface Sci., 224,173-179(2001)
[20]Yang, R. J.,Fu, L. M., and Hwang, C. C., “Electroosmotic flow in microchannel,” J. Colloid Interface Sci.,239,98-105(2001)
[21]Yanuar, K. W.,Udagawa, H.,” Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall,” J. Fluid Mech., 381,225-238(1999)
[22]Tretheway , D. C., Meinhart, C. D., ” Apparent fluid slip at hydrophobic microchannel walls,” Physics of Fluids,14,L9-L12(2002)
[23]Zhu, Y.,Granick, S., ”Rate-dependent slip of Newtonian liquid at smooth surfaces,”Phys. Rev. Lett., 87,096105(2001)
[24]Schweiss, R., Welzel, P. B.,Werner , C., Knoll, W.,”Interfacial charge of organic thin films characterized by streaming potential and streaming current measurements,” Colloids Surf. A, 195,97-102(2001)
[25]Craig ,V. S. J., Neto, C.,and Williams ,D. R. M., “Shear-dependent boundary slip in an aqueous Newtonian liquid,” Phys. Rev. Lett., 87,054504(2001)
[26]Thompson, P. A.,Troian,S. M. ”A general boundary condition for liquid flow at solid surfaces,”Nature,389, 360-362(1997)
[27]Yang, J.,Kwok, D. Y.,“Analytical treatment of electrokinetic microfluidics in hydrophobic microchannels,” Analytica Chemica Acta,507,39-53(2004)
[28]Yang , J., and , Kwok, D. Y., “Effect of liquid slip in electrokinetic parallel-plate microchannel flow,” J. Colloid Interface Sci., 260, 225-233(2003)
[29]Yang , J., and , Kwok, D. Y., “Time-dependent laminar electrokinetic slip flow in infinitely extended rectangular microchannels, ” J. chem. Phys.,118,354-363(2003)
[30]Yang , J., and , Kwok, D. Y., “A new method to determine zeta potential and slip coefficient simultaneously,” J. Phys. Chem. B , 106, 12851-12855(2002)
[31]Yang , J.,and , Kwok, D. Y., “Microfluid flow in circular microchannel with electrokinetic effect and navier slip condition,” Langmuir, 19, 1047-1053(2003)
[32]Grimes, B. A., and Liapis ,A. I., “Expressions for evaluating the possibility of slip at the liquid-solid interface in open tube capillary electrochromatography,” J. Colloid Interface Sci.,263, 113-118(2003)
[33]Lianguang Hu, Jed D. Harrison, and Jacob H. Masliyah,” Numerical model of electrokinetic flow for capillary electrophoresis,” J. Colloid Interface Sci.,215,300-312(1999)
[34]傅龍明,”微晶片電滲流場之分析與應用,”成功大學博士論文,2001年
[35]張志彰,”微管道電滲流流場之壓力分佈與混合機制分析,”成功大學碩士論文,2003年
[36]Tannehill, J. C.,Anderson, D. A.,Pletcher, R. H.,”Computational fluid mechanics and heat transfer,”Academic Press, New York(1997)
[37]Patankar, S. V. and Spalding, D. B.”A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer,15,1787-1806(1972)
[38]Patankar, S. V.,” Numerical heat transfer and fluid flow,” Academic Press, Washington, D. C.(1980)
[39]Erickson, D., Li, D.,” Influence of surface heterogeneity on electro- kinetically driven microfluidic mixing,” Langmuir,18,1883-1892(2002)
[40]Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, G. M., Kenny, T. W.,”Electroosmotic capillary flow with nonuniform zeta potential,” Anal. Chem.,72,1053-1057(2000)
[41]Fu, L. M., Lin, J. Y.,and Yang, R. J., “Analysis of electroosmotic flow with step change in zeta potential,”J. Colloid Interface Sci., 258, 266-275(2003)
[42]Harrison, D., Manz, A., Fan, Z., Ludi, H., and Widmer, H.,“Capillary electrophoresis and sample injection systems integrated on a planar glass chip,” Anal. Chem.,64,1926-1932(1992)
[43]Seiler, K., Harrison, D., Manz, A.,” Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency,”Anal. Chem.,65, 1491-1488(1993)
[44]Effenhauser, C. S. and Manz, A.,“Glass chip for high-speed capillary electrophoresis separations with submicrometer plate heights,”Anal. Chem.,65,2637-2642(1993)
[45]Lee, G. B., Hwei, B. H., Huang, G. R.,”Micromachined pre-focused m×n flow switches for continuous multi-sample injection,” Journal of Micromechanics and Microengineering,11,1-8(2001)
[46]Culbertson, C. T., Ramsey, S. R., Ramsey, J. M.,”Electroosmotically induced hydraulic pumping on microchips: differential ion transport,” Anal. Chem.,72,2285-2291(2000)
[47]Ermakov, S. V., Jacobson, S. C., Ramsey, J. M.,“Computer simulation of electrokinetic transport in micro fabricated channel structures,” Anal. Chem.,70,4494-4504(1998)
[48]Bianchi, F., Ferrigno, R., Girault, H. H., “Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimension,” Anal. Chem.,72,1987- 1993(2000)
[49]Maynes, D., Webb, B. W., “The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels,” Int. J. Heat Mass Transfer,47,987-999(2004)
[50]Qu, W., Li, D.,”A model for overlapped EDL field,”Journal of Colloid and Interface Science,224,397-407(2000)
[51]McNamara, G.,Zanetti, G.,”Use of the Boltzmann equation to simulate lattice-gas automata,”Phys. Rev. Lett., 61, 2332-2335(1988)
[52]Shaw, Duncan J., ”Introduction to colloid and surface chemistry,” Academic Press, Oxford(1992)
[53]Tiselius, A., “A new apparatus for electrophoretic analysis of colloidal mixtures,” Trans. Faraday Soc.,33, 524(1937)