簡易檢索 / 詳目顯示

研究生: 卓慶章
Cho, Ching-Chang
論文名稱: 考慮滑動邊界影響下微渠道內電滲流流場特性分析
Analysis of Electroosmotic Flow in Microchannels with Slip Boundary Effect
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 73
中文關鍵詞: 電滲流zeta電位勢滑動效應微渠道
外文關鍵詞: zeta potential, liquid slip, microchannel, electroosmotic flow
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文在探討微渠道內邊界滑動效應對電滲流動(electroosmotic flow,EOF)之影響。描述電滲流動的統御方程式包含:(1)Poisson-Boltzmann方程式,用以描述微渠道內電雙層(electric double layer,EDL)電位勢(electric potential)分佈;(2)Laplace方程式,用以描述外加電場電位勢分佈;(3)具電驅動物體力(electrokinetic body force)之Navier-Stokes方程式,用以描述微渠道內速度場分佈。使用的無因次化參數有滑動係數(slip coefficient)α、雷諾數(Reynolds number)Re及電雙層厚度參數(EDL thickness parameter)κ,其中Re數可表示成zeta電位勢與外加電場的強度。藉由數值模擬的方式,我們求解如下應用於微流體晶片的流場型態:
    一、平板微渠道(parallel-plate microchannels)
    二、T型及十字型微渠道(T-shape and cross-section microchannels)
    這裡我們使用Navier滑動邊界修正流體於壁面上的速度,模擬出壁面滑動現象,探討邊界滑動之影響。此外,我們亦探討Re數、κ值對速度、流率及電雙層電勢能之影響。結果顯示,在流場內邊界滑動、zeta電位勢、外加電場及電雙層厚度對電滲流場影響甚大。

    The effect of liquid slip on electroosmotic flow(EOF)in microchannels is studied in this paper. The governing equations used to describe electroosmotic flow include:(1)Poisson-Boltzmann equation for the electric field of electric double layer(EDL),(2)Laplace equation for the applied electric field, and(3)Navier-Stokes equations with electrokinetic body force for the velocity field. By using numerical simulation, the influence of the various parameters such as the , the slip coefficient, Re, the Reynolds number characterizing the zeta potential and the applied electrical field, and κ, double-layer thickness parameter, on the flow distribution is investigated. Two researchable subjects which have practical applications in microfluidic chip can be considered as follows:
    The first is the electroosmotic flow through microchannels between two parallel plates with boundary slip.
    The second is the effect of liquid slip on electroosmotic flow in T-shape and cross-section microchannels.
    Here we use Navier slip boundary condition to correct the fluid velocity at fluid-wall interface for the simulation of liquid slip. In addition, the variation of the velocity profile, flow rate, stream contours, and EDL potential with Re and κ are discussed in detail. Results show that liquid slip, zeta potential, applied electrical field, and double-layer thickness have significant influence.

    中文摘要………………………………… I 英文摘要………………………………… II 誌謝……………………………………… IV 目錄……………………………………… V 圖目錄…………………………………… Ⅷ 符號說明………………………………… XI 第一章、 緒論……………………………… 1 1-1 前言………………………1 1-2 文獻回顧….…………… 2 1-3 研究動機…………………5 1-4 論文架構…………………5 第二章、 描述電滲流場之數學模式……… 7 2-1 基本假設…………………8 2-2 統御方程式………………8 2-2-1 電雙層電位勢分佈………8 2-2-2 外加電場電位勢分佈……10 2-2-3 速度場分佈………………11 2-3 方程式之無因次化………12 2-4 方程式的離散與數值法…13 2-5 邊界條件與參數定義……16 2-6 解題程序…………………17 第三章、平行微渠道內電滲流動……………20 3-1 計算結果比較……………20 3-2 流動特性分析……………21 3-3 不均勻壁面電位勢之影響…24 3-3-1 異質性表面之影響………24 3-3-2 Step Change Zeta電位分佈…26 第四章、T型及十字型微渠道內電滲流動…… 39 4-1 計算結果比較………………40 4-2 T型微渠道之流動特性分析…40 4-3 十字型微渠道之流動特性分析…45 第五章、 總結………………………………… 59 參考文獻…………………………………………63 附錄 A、電滲流的形成機制……………………68 作者簡介、著作權聲明…………………………73

    [1]Manz, A., Graber, N. and Widmer, H. M., “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sensors and Actuators B1,224-248(1990)

    [2]Tuckermann, D. B., and Pease, R. F. W., “High-performance heat sinks for VLSI,” IEEE Electron Decice Lett.,2,126-129(1981)

    [3]Tuckermann, D. B., and Pease, R. F. W., “Optimized convective cooling using micromachined structrues,” J. Electrochem. Soc., 129, c98(1982)

    [4]Mala, G. M. and Li, D., “Flow characteristics of water in microtubes,” Int. J. Heat Fluid Flow,20,142-148(1999)

    [5]Peng,X. F., Peterson, G. P. and Wang, B. X., “Frictional flow characteristics of water flowing through rectangular microchannel,” Exp. Heat Transfer,7,249-264(1994)

    [6]Peng, X. F.,Peterson, G. P. and Wang, B. X., “Heat transfer characteristics of water flowing through microchannel,” Exp. Heat Transfer,7,265-283(1999)

    [7]Wang, B. X. and Peng, X. F., “Experimental investigation on liquid forced-convection heat transfer through microchannels,” Int. J. Heat Mass Transferm,37,73-81(1994)

    [8]Hunter, Robert J., “Zeta potential in colloid science: principles and applications,” Academic Press, New York(1981)

    [9]George Em Karniadakis, Ali Beskok ,”Micro flows: fundamentals and simulation,” Academic Press, New York(2002)

    [10]Probstein, Ronald F.,“Physicochemical hydrodynamics an introduction,”Academic Press, New York(1994)

    [11]Burgeen, D. and Nakache, F., ”Electrokinetic flow in ultrafine capillary slits,”J. Phys. Chem.,68,1084-1091(1964)

    [12]Rice, C. L., Whitehead, R., “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem.,69,4017-4023(1965)

    [13]Levine, S., Marriott, J. R., Neale, G. and Epstein, N., “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potential,” Journal of Colloid Science,52,136-149(1975)

    [14]Yang, C., Li, D., Masliyah, Jacob H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects ,” Int. J. Heat Mass Transfer, 41,4229-4249(1998)

    [15]Yang, C., Li D., “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids Surf. A, 143, 339-353(1998)

    [16]Mala, G. M.,Li, D., Dale, J. D., “Heat transfer and fluid flow in microchannels,”Int. J. Heat Mass Transfer,40,3079-3088(1997)

    [17]Bowen, W. Richard, Jenner, F., “Electroviscous effects in charged capillaries,” J. Colloid Interface Sci.,173,388-395(1998)

    [18]Patankar, N. A.,and Hu, H. H., “Numerical simulation of electroosmotic flow,” Anal. Chem.,70,1870-1881(1998)

    [19]Yang, R. J.,Fu, L. M., and Hwang ,C. C., “Electroosmotic entry flow in a microchannel,” J. Colloid Interface Sci., 224,173-179(2001)

    [20]Yang, R. J.,Fu, L. M., and Hwang, C. C., “Electroosmotic flow in microchannel,” J. Colloid Interface Sci.,239,98-105(2001)

    [21]Yanuar, K. W.,Udagawa, H.,” Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall,” J. Fluid Mech., 381,225-238(1999)

    [22]Tretheway , D. C., Meinhart, C. D., ” Apparent fluid slip at hydrophobic microchannel walls,” Physics of Fluids,14,L9-L12(2002)

    [23]Zhu, Y.,Granick, S., ”Rate-dependent slip of Newtonian liquid at smooth surfaces,”Phys. Rev. Lett., 87,096105(2001)

    [24]Schweiss, R., Welzel, P. B.,Werner , C., Knoll, W.,”Interfacial charge of organic thin films characterized by streaming potential and streaming current measurements,” Colloids Surf. A, 195,97-102(2001)

    [25]Craig ,V. S. J., Neto, C.,and Williams ,D. R. M., “Shear-dependent boundary slip in an aqueous Newtonian liquid,” Phys. Rev. Lett., 87,054504(2001)

    [26]Thompson, P. A.,Troian,S. M. ”A general boundary condition for liquid flow at solid surfaces,”Nature,389, 360-362(1997)

    [27]Yang, J.,Kwok, D. Y.,“Analytical treatment of electrokinetic microfluidics in hydrophobic microchannels,” Analytica Chemica Acta,507,39-53(2004)

    [28]Yang , J., and , Kwok, D. Y., “Effect of liquid slip in electrokinetic parallel-plate microchannel flow,” J. Colloid Interface Sci., 260, 225-233(2003)

    [29]Yang , J., and , Kwok, D. Y., “Time-dependent laminar electrokinetic slip flow in infinitely extended rectangular microchannels, ” J. chem. Phys.,118,354-363(2003)

    [30]Yang , J., and , Kwok, D. Y., “A new method to determine zeta potential and slip coefficient simultaneously,” J. Phys. Chem. B , 106, 12851-12855(2002)

    [31]Yang , J.,and , Kwok, D. Y., “Microfluid flow in circular microchannel with electrokinetic effect and navier slip condition,” Langmuir, 19, 1047-1053(2003)

    [32]Grimes, B. A., and Liapis ,A. I., “Expressions for evaluating the possibility of slip at the liquid-solid interface in open tube capillary electrochromatography,” J. Colloid Interface Sci.,263, 113-118(2003)

    [33]Lianguang Hu, Jed D. Harrison, and Jacob H. Masliyah,” Numerical model of electrokinetic flow for capillary electrophoresis,” J. Colloid Interface Sci.,215,300-312(1999)

    [34]傅龍明,”微晶片電滲流場之分析與應用,”成功大學博士論文,2001年

    [35]張志彰,”微管道電滲流流場之壓力分佈與混合機制分析,”成功大學碩士論文,2003年

    [36]Tannehill, J. C.,Anderson, D. A.,Pletcher, R. H.,”Computational fluid mechanics and heat transfer,”Academic Press, New York(1997)

    [37]Patankar, S. V. and Spalding, D. B.”A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer,15,1787-1806(1972)

    [38]Patankar, S. V.,” Numerical heat transfer and fluid flow,” Academic Press, Washington, D. C.(1980)

    [39]Erickson, D., Li, D.,” Influence of surface heterogeneity on electro- kinetically driven microfluidic mixing,” Langmuir,18,1883-1892(2002)

    [40]Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, G. M., Kenny, T. W.,”Electroosmotic capillary flow with nonuniform zeta potential,” Anal. Chem.,72,1053-1057(2000)

    [41]Fu, L. M., Lin, J. Y.,and Yang, R. J., “Analysis of electroosmotic flow with step change in zeta potential,”J. Colloid Interface Sci., 258, 266-275(2003)

    [42]Harrison, D., Manz, A., Fan, Z., Ludi, H., and Widmer, H.,“Capillary electrophoresis and sample injection systems integrated on a planar glass chip,” Anal. Chem.,64,1926-1932(1992)

    [43]Seiler, K., Harrison, D., Manz, A.,” Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency,”Anal. Chem.,65, 1491-1488(1993)

    [44]Effenhauser, C. S. and Manz, A.,“Glass chip for high-speed capillary electrophoresis separations with submicrometer plate heights,”Anal. Chem.,65,2637-2642(1993)

    [45]Lee, G. B., Hwei, B. H., Huang, G. R.,”Micromachined pre-focused m×n flow switches for continuous multi-sample injection,” Journal of Micromechanics and Microengineering,11,1-8(2001)

    [46]Culbertson, C. T., Ramsey, S. R., Ramsey, J. M.,”Electroosmotically induced hydraulic pumping on microchips: differential ion transport,” Anal. Chem.,72,2285-2291(2000)

    [47]Ermakov, S. V., Jacobson, S. C., Ramsey, J. M.,“Computer simulation of electrokinetic transport in micro fabricated channel structures,” Anal. Chem.,70,4494-4504(1998)

    [48]Bianchi, F., Ferrigno, R., Girault, H. H., “Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimension,” Anal. Chem.,72,1987- 1993(2000)

    [49]Maynes, D., Webb, B. W., “The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels,” Int. J. Heat Mass Transfer,47,987-999(2004)

    [50]Qu, W., Li, D.,”A model for overlapped EDL field,”Journal of Colloid and Interface Science,224,397-407(2000)

    [51]McNamara, G.,Zanetti, G.,”Use of the Boltzmann equation to simulate lattice-gas automata,”Phys. Rev. Lett., 61, 2332-2335(1988)

    [52]Shaw, Duncan J., ”Introduction to colloid and surface chemistry,” Academic Press, Oxford(1992)

    [53]Tiselius, A., “A new apparatus for electrophoretic analysis of colloidal mixtures,” Trans. Faraday Soc.,33, 524(1937)

    下載圖示 校內:2006-07-26公開
    校外:2006-07-26公開
    QR CODE