簡易檢索 / 詳目顯示

研究生: 蘇媛媛
Masrul, Suryaneta-Binti
論文名稱: 應用於直接乙醇燃料電池的PtSnP/C觸媒之研究
Investigation on PtSnP/C Catalyst for Direct Ethanol Fuel Cell
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 103
中文關鍵詞: 乙醇燃料電池陽極觸媒
外文關鍵詞: anode catalyst, direct ethanol fuel cell, taguchi method
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙醇燃料電池的陽極氧化反應有許多中間產物及副產物產生,反應機制非常複雜,故陽極觸媒活性為效能增進的關鍵因素。陽極觸媒為將金屬觸媒擔在碳黑,常使用到的金屬觸媒是白金,白金對乙醇氧化具有高活性,卻有中間產物毒化觸媒的問題存在。為了增進金屬觸媒對乙醇氧化的電化學活性,常會將白金與其他金屬製備為二合金或三合金金屬觸媒,其中PtSn/C具有高的乙醇氧化活性。
    本研究中,利用NaBH4作為還原劑製備Pt/C、PtSn/C和PtSnRu/C陽極觸媒,與利用次磷酸鈉為還原劑製備PtSnP/C陽極觸媒,以獲取相同pt擔載量。在半電池中,以循環伏安法做測試,PtSnP/C相對於Pt/C與PtSn/C的峰電流分別高25 %與8 %,但較PtSnRu/C 效能降低了4.8 %。但PtSnP/C起始電位較PtSnRu/C負,可由此判斷其有較高的活性,且較低成本。
    在pH值為14、迴流溫度90 oC下製備PtSnP/C陽極觸媒,利用水為溶劑控制PtCl6-2濃度,發現高濃度的PtCl6-2溶液可同時增加磷在碳黑上擔載的比例,與降低合金金屬的觸媒粒徑。
    在探討PtSnP/C為陽極觸媒活性的實驗中利用循環伏安法及線性掃描做測試,使用田中實驗設計法獲得高活性的陽極觸媒的最佳的實驗條件為:用1350毫克NaH2PO2還原247.5毫克的氯鉑酸與39.5毫克四氯化錫製備金屬觸媒,將其擔載在300毫克的碳黑上,並使用187.5毫克為穩定劑。

    For the anode catalyst of direct ethanol fuel cell, the reactivity of Ethanol Oxidation Reaction (EOR) that has multistep mechanism, a number of adsorbed intermediates and byproducts need improvement. Platinum is recognized as the most active metal for ethanol oxidation but still have problems such as inhibition or poisoning by intermediates. In order to improve the electrocatalytic activity of ethanol oxidation, researches for modifying Platinum with second and/or third metal were common and PtSn/C catalyst lead to improvement in the ethanol oxidation.
    In this study, Pt/C, PtSn/C, PtSnRu/C catalysts that used NaBH4 as reducing agent and PtSnP/C catalyst that used sodium hypophosphite as reducing agent and source of phosphorus have been prepared with same loading of platinum. The first peak current density at positively scanning in a cyclic voltammogram have shown that activity of PtSnP/C was higher than those of Pt/C and PtSn/C by 25 % and 8 %, but lower than PtSnRu/C by 4.8 %. Although its activity lower than that of PtSnRu/C, but PtSnP/C is less expensive and more active based on more negative onset potential.
    Through preparation procedure of PtSnP/C such as pH 14, 90 oC, and 8 hours deposition time, 16 ml water was used as solvent to control the concentration of PtCl62- it was found that higher concentration of PtCl62- gave more amount of phosphorus and smaller size of nanoparticle.
    The best PtSnP/C has been studied by finding the optimum loading of each element in catalyst. These experiments used Taguchi method that has been success as reliable, relative low cost, and high quality experiment design. Peak current of cyclic voltammogram and liner sweep potential were used as parameter response. After larger-the-better of signal/noise ratio was applied, the optimum loading of each element are: 247.5 mg of hydrogen hexachloroplatinate (IV) hydrate as platinum precursor, 39.5 mg of tin (IV) chloride pentahydrate as tin precursor, 1350 mg of sodium hypophosphite monohydrate as reducing agent and phosphorus source, 300 mg carbon XC-72 as catalyst support, and 187.5 mg of trisodium citrate dihydrate as stabilizing agent.

    LIST OF TABLES ............................................................................................ v LIST OF FIGURES........................................................................................viii ACKNOWLEDGMENTS..............................................................................xiv ABSTRACT IN ENGLISH............................................................................xvi ABSTRACT IN CHINESE..........................................................................xviii CHAPTER I INTRODUCTION....................................................................... 1 1.1 BACKGROUND ..................................................................................... 1 1.2 MOTIVATION AND OBJECTIVES...................................................... 3 1.3 OUTLINE OF THE THESIS................................................................... 5 CHAPTER II LITERATURE SURVEY .......................................................... 7 2.1 DIRECT ETHANOL FUEL CELL ..................................................................7 2.1.1 Working Principle of Direct Ethanol Fuel Cell................................. 7 2.1.2 Materials of Catalyst for Direct Ethanol Fuel Cell ........................... 8 2.1.3 Preparation Method of Catalyst for Direct Ethanol Fuel Cell .......... 9 2.1.4 Catalyst Support for Direct Ethanol Fuel Cell ................................ 12 2.1.5 Ethanol Oxidation Reaction ............................................................ 13 2.2 CYCLIC VOLTAMMOGRAM......................................................................19 2.2.1 Fundamental .................................................................................... 19 2.2.2 Data Interpretation........................................................................... 23 CHAPTER III EXPERIMENTAL SECTION................................................ 29 3.1 MATERIALS......................................................................................... 29 3.2 PROCEDURE TO MAKE CATALYSTS ............................................ 30 3.2.1 Preparation Pt/C, PtSn/C, and PtSnRu/C Catalyst for References . 30 3.2.2 Preparation PtSnP/C Catalyst for Study the Effect of Reducing Agent Variation .............................................................................. 33 3.2.3 Preparation PtSnP/C Catalyst to Study the Effect of pH ................ 39 3.2.4 Preparation PtSnP/C Catalyst to Study the Effect of Phosphorus and Tin Content ..................................................................................... 39 3.2.5 Preparation PtSnP/C Catalyst for Study the Effect of [PtCl6]2- Concentration.................................................................................. 39 3.2.6 Preparation PtSnP/C Catalyst for Optimization Catalyst by Taguchi Method ............................................................................................ 39 3.3 PREPARATION FOR A HALF CELL................................................. 41 3.4 PREPARATION FOR ICP-MS............................................................. 45 CHAPTER IV RESULT AND DISCUSSION............................................... 47 4.1 COMPARISON PtSnP/C CATALYST WITH REFERENCES .......... 47 4.2 EFFECT OF REDUCING AGENT VARIATION ON PtSnP/C CATALYST PREPARATION PROCEDURE.................................... 55 4.3 EFFECT OF pH VARIATION ON PtSnP/C CATALYST PREPARATION PROCEDURE.......................................................... 61 4.4 EFFECT OF TIN AND PHOSPHORUS CONTENT IN PtSnP/C CATALYST.......................................................................................... 63 4.5 EFFECT OF PtCl6 2- CONCENTRATION............................................ 66 4.6 STUDY SOME EFFECTS DURING ELECTROCHEMICAL MEASUREMENT................................................................................ 74 4.6.1 Effect of Ethanol and Sulfuric Acid Concentration Variation...... 74 4.6.2 Effect of Catalyst Loading Variation ............................................ 77 4.6.3 Effect of Scanning Rate Variation ................................................ 78 4.6.4 Effect of Temperature Variation ................................................... 80 4.6.5 Effect of Forward Scan Limit Variation ....................................... 80 4.7 OPTIMISATION PtSnP/C CATALYST USING TAGUCHI METHOD ............................................................................................................... 81 CHAPTER V CONCLUSION........................................................................ 93 REFERENCES................................................................................................ 95

    Conti JJ. The Annual Energy Outlook 2009. Energy Information Administration USA 2009.
    Cosmi C, Macchiato M, Mangiamele L, Marmo G, Pietrapertosa F, Salvia M. Environmental and Economic Effects of Renewable Energy Sources Use on a Local Case Study. Energy Policy 2003: 31: 443-457.
    Wachsmann U, Tolmasquim MT. Wind Power in Brazil—Transition Using German Experience. Renewable Energy 2003: 28: 1029.
    Muhida R, Park M, Dakkak M, Matsuura K, Tsuyoshi A, M Michira. A Maximum Power Point Tracking for Photovoltaic-SPE System Using a Maximum Current controller. Solar Energy Material Solar Cell 2003: 75: 697.
    Acres GJK. Recent Advances in Fuel Cell Technology and Its Applications . Power Sources 2001: 100: 60-66.
    Hamelin J, Agbossou, Lapperriere A, Laurencelle F, Bose TK. Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications. International Hydrogen Energy 2001: 26: 625.
    Heinzel A, Nolte R, Hey KL, Zedda M. Membrane Fuel Cells — Concepts and System Design. Electrochimica Acta 1998: 43: 3817-3820
    Wang M. Fuel Choices for Fuel-Cell Vehicles: Well-to-Wheels Energy and Emission Impacts. Power Sources 2002: 112: 307.
    Peled E, Duvdevani T, Aharon A, Melman A. New Fuels as Alternatives to Methanol for Direct Oxidation Fuel Cells. Electrochemistry Solid State Lett 2001: 4: A38.
    Chu D.J, Jiang R, Gardner K, Jacobs R, Schmidt J, Quakenbush T, Stephens J. Polymer Electrolyte Membrane Fuel Cells for Communication Applications. Power Sources 2001: 96: 174.
    Heinzel A, Hubling C, Muller M, Zedda M, Muller C. Fuel Cells for Low Power Applications. Power Sources 2002: 105: 250.
    Perry ML, Fuller TF. A Historical Perspective of Fuel Cell Technology in the 20th Century. Electrochemical Society 2002: 149: 59-67.
    Grove WR. On the Electro-Chemical Polarity of Gases. Philosophical Magazine 1839:14:127.
    Carrette L, Friedrich KA, Stimming U. Fuel cells: Principles, Types, Fuels, and Applications. Chemphyschem 2000: 1: 162-193.
    Larminie J, Dicks A. Fuel Cell Systems Explained. Wiley: Chichester second edition 2003.
    Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula A, Tsiakaras. Bi- and Tri-Metallic Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells. Power Sources 2004: 131: 217-223.
    Tsiakaras PE. PtM/C (M=Sn, Ru, Pd, W) Based Anode Direct Ethanol-PEMFCs: Structural Characteristics and Cell Performance. Power Sources 2007: 171: 107-112.
    Lamy C, Belgsir EM, Leger JM. Electrocatalytic Oxidation of Aliphatic alcohols: Application to the Direct Alcohol Fuel Cell (DAFC). Applied Electrochemistry 2001: 31: 799-809.
    Zhou WJ, Song SQ, Li Z, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells. Solid State Ionics 2004: 175 797–803.
    Xu C, Cheng L, Shen P, Liu Y. Methanol and Ethanol Electrooxidation on Pt and Pd Supported on Carbon Microspheres in Alkaline Media. Electrochemistry Communications 2007: 9: 997-1001.
    Liu J, Ye J, Xu C, Jiang SP, Tong Y. Kinetics of Ethanol Electrooxidation at Pd Electrodeposited on Ti. Electrochemistry communications 2007: 9: 2334-2339.
    Guo DJ, Li HL. High Dispersion and Electrocatalytic Properties of Palladium Nanoparticles on Single-Walled Carbon Nanotubes. Colloid and Interface Science 2005: 286: 274-279.
    Xu C, Hu Y, Rong J, Jiang SP, Liu Y. Ni Hollow Sphere as Catalyst for Methanol and Ethanol Electrooxidation. Electrochemistry communication 2007: 9: 2009-2012.
    Volkmar MS, Remo I, Elena P, Sergio G. Electrochemical Reactivity of Ethanol on Porous Pt and PtRu: Oxidation/Reduction Reaction in l M HClO4. Physical Chemistry 1996: 100:17901–17908.
    Fujiwara N, Friedrich KA, Stimming U. Ethanol Oxidation on PtRu Electrodes Studied by Differential Electrochemical Mass Spectrometry. Electroanalytic Chemistry 1999: 472: 120–125.
    Xu C, Shen PK, Ji X, Zeng R, Liu Y. Enhanced Activity for Ethanol Electrooxidation on Pt–MgO/C Catalysts 2005: 7: 1305-1308.
    Song H, Qiu X, Li F, Zhu W, Chen L. Ethanol Electro-Oxidation on Catalysts with TiO2 Coated Carbon Nanotubes as Support. Electrochemistry Communications 2007: 9: 1416-1421.
    Song H, Qiu X, Li X, Li F, Zhu W, Xhen L. TiO2 Notubes Promoting Pt/C Catalysts for Ethanol Electro-Oxidation in Acidic Media. Power Sources 2007: 170: 50-54.
    Neto AO, Farias FA, Dias RR, Brandalise M, Linardi M, Spinace EV. Enhanced Electro-Oxidation of Ethanol Using PtSn/CeO2–C Electrocatalyst Prepared by an Alcohol-reduction Process. Electrochemistry Communications 2008: 10: 1315-1317.
    Chen GL, Sun SG, Chen SP, Zhou ZY. In-situ FTIR Reflection Spectroscopy Studies on Ethanol Electrocatalytic Oxidation on Carbon Supported Pt/Sbad. Chinese Applied Chemistry 2001: 18(6): 432–435.
    De Souza JPI, Queiroz SL, Bergmaski K, Gonzalez ER, Nart FC. Electrooxidation of Ethanol on Pt, Rh, and PtRh Electrodes—A Study Using DEMS and in-situ FTIR Techniques. Physical Chemistry B 2002: 106: 9825–30.
    Gattrell M,Gupta N, Co A. A Review of the Aqueous Electrochemical Reduction of CO2 to Hydrocarbons at Copper. Electroanalytical Chemistry 2006: 594: 65.
    Oliveria Neto A, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER. The Electro-Oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Electrochemistry Society 2002: 149(3): A272–9.
    Xu C, Shen PK, Liu Y. Ethanol Electrooxidation on Pt/C and Pd/C Catalysts Promoted with Oxide. Power Sources 2007: 164: 527-531.
    Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C. On the Mechanism of Ethanol Electro-Oxidation on Pt and PtSn Catalysts: Electrochemical and in situ IR Reflectance Spectroscopy Studies. Electroanalytical Chemistry 2004: 563: 81-89.
    Zhang D, Ma Z, Wang G, Konstantinov K, Yuan X, Liu A. Electro-Oxidation of Ethanol on Pt-WO3/C Electrocatalyst. Electrochemical and Solid State Letters 2006: 9: A423-426.
    Delime F, Leger JM, Lamy C. Enhancement of the Electrooxidation of Ethanol on a Pt-PEM Eletrode Modified by Tin Part I: Half Cell Study. Applied Electrochemistry 1999: 29: 1249–54.
    Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C. Development of Anode Catalysts for a Direct Ethanol Fuel Cell. Applied Electrochemistry 2004: 34: 439 –446.
    Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula A, Tsiakaras. Bi- and Tri-Metallic Pt-Based Anode Catalysts for Direct Ethanol Fuel Cells. Power Sources 2004: 131: 217-223.
    Tsiakaras PE. PtM/C (M=Sn, Ru, Pd, W) Based Anode Direct Ethanol-PEMFCs: Structural Characteristics and Cell Performance. Power Sources 2007: 171: 107-112.
    Li H, Sun G, Cao L, Jiang L, Xin Q. Comparison of Different Promotion Effect of PtRu/C and PtSn/C Electrocatalysts for Ethanol Electro-Oxidation. Electrochimica Acta 2007: 52: 6622-6629.
    Tanaka S, Umeda M, Ojima H, Usui Y, Kimura O, Uchida I. Preparation and Evaluation of a Multi-Component Catalyst by Using a Co-Sputtering System for Anodic Oxidation of Ethanol. Power Sources 2005: 152: 34.
    Chan KY, Ding J, Ren J, Cheng S, Tsang KY. Supported Mixed Metal Nanoparticles as Electrocatalysts in Low Temperature Fuel Cells. Materials chemistry 2004: 14: 505
    Bonneman H, Richards RM. Nanoscopic Metal Particles - Synthetic Methods and Potential Applications Europe Inorganic Chemistry 2001: 2455.
    Curtis AC, Duff DG, Edwards PP, Jefferson DA, Johnson BFG, Kirkland AI, Wallace AS. Preparation and Structural Characterization of An Unprotected Copper Sol. Physical Chemistry 1988: 92: 2270-2275.
    Wang Y, Ren J, Deng K, Gui L, Tang Y. Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chemistry of Materials 2000: 12: 1622.
    Shen PK, Tian Z. Performance of Highly Dispersed Pt/c Catalysts for Low Temperature Fuel Cells. Electrochimica Acta 2004: 49: 3107
    Zhou Z, Wang S, Xhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q. Novel Synthesis of Highly Active Pt/C Cathode Electrocatalyst for Direct Methanol Fuel Cell. Chemical Communications 2003: 394-395.
    Zhang X, Chan KY. Water-in-Oil Microemulsion Synthesis of Platinum−Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties. Chemistry of Materials 2003: 15: 451-459.
    Nie M, Tang H, Wei Z, Jiang SP, Shen PK. Highly Efficient AuPd-Wc/C Electrocatalyst for Ethanol Oxidation. Electrochemistry Communications 2007: 9: 2375-2379.
    Lamy C, Belgsir EM, Leger JM. Electrocatalytic Oxidation of Aliphatic Alcohols: Aplication tTo Direct Alcohol Fuel Cell (DAFC). Applied Electrochemistry 2001: 31: 799-809.
    Beard KD, Schaal MT, Van Zee JW, Monnier JR. Preparation of Highly Dispersed PEM Fuel Cell Catalysts Using Electroless Deposition Methods. Applied Catalysis B: Environmental 2007: 72: 262–271.
    Ali N, Neto VF, Mei S, Cabral G, Kousar Y, Titus E, Ogwu AA, Misra DS, Gracio J. Optimisation of the New Time-Modulaterd CVD Process Using the Taguchi Method. Thin Solid Films: 2004: 469:154-160.
    Tian J.H., Wang F.B., Shan Zh.Q., Wang R.J., and Zhang J.Y. Effect of Preparation Conditions of Pt/C Catalysts on Oxygen Electrode Performance In Proton Exchange Membrane Fuel Cells. Applied Electrochemistry 2004: 34: 461–467.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM. Recent Progress in the Direct Ethanol Fuel Cell: Development of New Platinum-Tin Electrocatalysts. Electrochemistry Acta 2004: 49: 3901-3908.
    Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P. Direct Ethanol Fuel Cells Based on PtSn Anodes: the Effect of Sn Content on The Fuel Cell Performance. Power Sources 2005: 140: 50-58.

    下載圖示 校內:2010-09-04公開
    校外:2010-09-04公開
    QR CODE