簡易檢索 / 詳目顯示

研究生: 雲緹
Yuniarti, Yuyun
論文名稱: 不對稱誘導在超分子自我排列結構及超扭旋向列型液晶元件之應用研究
Chiral Inductions on Supramolecular Self-Assembly and Super-Twisted Nematic Liquid Crystal Cells
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 93
中文關鍵詞: 自組裝非對稱結構掌性向列型液晶 (N*LC)超扭曲液晶 (STNLC)超分子
外文關鍵詞: self-assembly, asymmetric construction, chiral nematic liquid crystal (N*LC), super-twisted nematic liquid crystal (STNLC), supramolecule
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中分子的不對稱性(掌性)是生命現象重要的基礎性質之一,其在生物系統中的尖端功能性是不可少的要素。本研究合成一種掌性化合物cholesteryl 4-(carbonyloxy)4-(hexyloxyl)benzoate (CCH*),並探討非掌性膠體化合物oxalyl acid N',N'-di(4-(hexyloxy)benzoyl)-hydrazide (AG6) 和 oxalyl acid N',N'-di(4-(undecyloxy) benzoyl)-hydrazide (AG11) 在不同有機溶劑結合下形成膠體的特性。利用SEM與TEM 分析凝膠微結構及形態發現,兩種非掌性有機凝膠體在特定溶劑中可自組裝成奈米或微米級超分子結構,並導致形成具有高度排序的三維網格狀結構。利用變溫1H-NMR分析有機凝膠分子間相互作用力,結果顯示凡德瓦爾力與π-π作用力為形成超分子的主要驅動力。為研究CCH*化合物對不對稱性結構誘導能力,我們將不具凝膠特性的CCH*化合物當作自組裝凝膠的掌性摻混物。利用CD光譜、SEM與TEM分析進一步證實,摻入CCH*到非掌性膠體可誘導出不對稱凝膠結構。另外,為了研究CCH*在液晶上的應用特性,將CCH*掌性摻混物與市售向列型液晶進行摻混,利用POM可觀察到指紋型膽固醇液晶相的生成。使用所合成之化合物製備STN型液晶裝置,通過對液晶盒施加電場,結果顯示可逆的開-關光電特性。

    Chirality is one of fundamental properties in nature, it is essential to functioning and sophisticated in biological system. Chiral cholesteryl 4-(carbonyloxy)-4-(hexyloxyl)benzoate (CCH*) was synthesized in this study. Gelation characterization of pre-design organogelators oxalyl acid N',N'-di(4-(hexyloxy)benzoyl)-hydrazide (AG6) and oxalyl acid N',N'-di(4-(undecyloxy)benzoyl)-hydrazide (AG11) in various organic solvents was studied. The microstructures and morphologies of the organogelators were investigated using SEM and TEM analysis. Both achiral organogelators self-assembled into nano- or micro-scale superstructures in an appropriate organic solvents and resulting in the formation of highly ordered three-dimensional networks. The results of the temperature-dependent 1H-NMR analysis of the organogelators revealed that van der Waals forces and π-π interactions acted as driving forces leading to self-assembly into three-dimensional networks. The synthesized chiral CCH* does not show gelation in organic solvents. To estimate the effect of CCH* on the induction of asymmetric construction, CCH* was used as a chiral dopant on the self-assembly of gelators. The results indicate that doping of CCH* into the achiral gel systems offered achiral environment inducing asymmetric constructions. The chiral induction was further evidenced via CD spectra, XRD, SEM and TEM analysis. To study the application of CCH* on liquid crystals, CCH* was further added into commercially available nematic liquid crystal (HSG-222000) to form chiral nematic liquid crystal (N*LC). Cholesteric fingerprint textures of N*LC was observed using POM analysis. A supper-twisted nematic liquid crystal (STNLC) cell was fabricated using the synthesized N*LC. Electro-optical properties of the fabricated STNLC was investigated showing reversible ON and OFF states via electric field bias on the sample cells.

    Table of Contents Abstract I 中文摘要 II Acknowledgements IX List of Tables XII List of Figures XIII List of Schemes XIX I. Introduction 1 1.1 Overview 1 1.2 Research Motivation 4 II. Literature Review 5 2.1 Supramolecular Chemistry 5 2.2 Non-covalent interaction 6 2.2.1 Hydrogen bonding 7 2.2.2 π-π stacking 9 2.2.3 Van der Waals Force 11 2.2.4 Metal coordination 13 2.3 Supramolecular chirality 14 2.3.1 Exclusively chiral molecules 18 2.3.2 Combination of chiral and achiral molecule 23 2.3.3 Exclusively achiral compound 28 2.4 Liquid Crystal 30 2.4.1 Classification of Liquid Crystal 31 2.4.2 Twisted Nematic Liquid Crystal 35 2.4.3 Super Twisted Nematic Liquid Crystal 38 III. Experimental Section 43 3.1 Materials 43 3.2 Instruments 45 3.3 Experimental Process 46 3.3.1 Synthesis of Cholesteryl Derivative CCH* 46 3.3.2 Synthesis of Achiral Gelators 48 3.3.3 Fabrication of liquid crystal cell 51 3.3.4 Characterization of Gelation 53 3.3.5 SEM and TEM Measurement 53 3.3.6 Temperature-dependent 1H-NMR Measurement 54 3.3.7 FTIR Measurement 54 3.3.8 X-ray Diffraction (XRD) Measurement 54 3.3.9 Circular Dichroism (CD) Measurement 54 IV. Results and Discussions 55 4.1 Characterization of the Synthesized Compounds 55 4.2 Gelation Behavior of the Synthesized Molecules 59 4.3 Characterization of the Self-assembled Gels 62 4.4 Temperature-dependent 1H-NMR Analysis 65 4.5 Chirality Induced Self-Assembled Constructions 66 4.6 Thermal and Optical Properties of Organogelators 76 4.7 Optical Characterization of Chiral Nematic Liquid Crystal (N*LC) 80 4.8 Electro-Optic Properties of Chiral Nematic Liquid Crystal (N*LC) 84 V. Conclusion 89 References 90

    [1] Duan, P., Cao, H., Zhang, L. and Liu, M. (2014). Gelation induced supramolecular chirality: chirality transfer, amplification and application. Soft Matter, 10, 5428-5448.
    [2] Lehn, J.M. (1987). Supramolecular chemistry-scope and perspectives molecules-supermolecules-molecular devies. Paris Publishing: Paris
    [3] Chen, H., Li, L., Liu, D., Huang, H., Deng, J. and Yang, W. (2014). Optically active helical polyacetylene/Fe3O4 composites microspheres: prepared by precipitation polymerization and used for enantioselective crystallization. Royal Society of Chemistry, 4, 63611-63619.
    [4] Eelkema, R. (1978). Liquid crystal as amplifiers of molecular chirality, in Organic and Molecular Inorganic Chemistry. University of Groningen: Netherlands.
    [5] Scheffer, T.a.N., J. (1997). Supertwisted nematic (STN) Liquid Crystal Displays. Annual Reviews Mater. Sci, 27, 555-583.
    [6] Mattia, E.a.O., S. (2015). Supramolecular system chemistry. Nature Nanotechnology, 10,111-119.
    [7] Stupp, S.I.a.P., L. C. (2013). Supramolecular chemistry and self-assembly in organic materials design. Chemistry Materials, 26, 507-518.
    [8] Chiu, Y.H.a.L., J. H. (2010). Polymerization and Characterization of Self-Assembledb-Cyclodextrin-Threaded Chiral Monomers. Journal of Polymer Science, 48, 2975-2981.

    [9] Prins, L.J.R., D. N, and Timmerman, P. (2001). Noncovalent synthesis using Hydrogen Bonding. Angew. Chem. Int, 40, 2382-2462.
    [10] Yan, Y., Lin, Y., Qiao, Y. and Huang, J. (2011). Construction and application of tunable one-dimensioanal soft supramolecular assemblies. Soft Matter, 7, 6385-6398.
    [11] Milo, R.a.P., R. (2015). Cell biology by the numbers. ed. G. Science. Taylor & Francis Group: Israel.
    [12] Geim, A.K.a.G. (2013). Van der Waals heterostructures. Nature, 499, 419-425.
    [13] Calama, M.C.a.R., D. N. (2006). Supramolecular Chirality. Springer: Germany.
    [14] Kumar, M.a.G., S. J. (2014). Homotropic and heterotropic allosteric regulation of supramolecular chirality. Royal Society of Chemistry, 5, 3025-3030.
    [15] Liu, C.J., Q. Lv, K., Zhang, L. and Liu, M. (2014). Water tuned the helical nanostructures and supramolecular chirality in organogels. Royal Society of Chemistry, 50, 3702-3705.
    [16] Zhang, L., Qin, L., Wang, X., Cao, H. and Liu, M. (2014). Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions. Advanced Materials, 26, 6959-6964.
    [17] Lv, K., Qin, L., Wang, X., Zhang, L. and Liu, M. (2013). A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding. Royal Society of Chemistry, 15, 20197-20202.
    [18] Shen, Z., Jiang, Y., Wang, T. and Liu, M. (2015). Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by π−π stacking. American chemical society, 137, 16109-16115.

    [19] Cristaldi, D.J., Pennisi, S. and Pulviranti, F. (2009). Liquid Crystal Display Drivers. Springer: Italy.
    [20] Dierking, I. (2014). Chiral Liquid Crystal: structures, phase, effects. Symmetry, 6, 444-472.
    [21] Goh, M., Matsushita, S. and Akagi, K. (2010). From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation. Chemical Society Review, 39, 2466-2476.
    [22] Kim, K.H., and Song, J. K. (2009). Technical evolution of liquid crystal displays. Nature, 1, 29-36.
    [23] Lin, G.J., Chen, T. J., Lin, Y. T., Wu, J. J. and Yang, Y.J. (2014). Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields. Optical Material Express, 4, 2468-2477.
    [24] Kelly, S.M.a.O.N., M. (2001). Liquid Crystals for electro-optic application. Handbook of advanced electronic and photonic material and devices. ed. H.S. Nalwa. Vol. 7. Academic: New York.
    [25] Cui, J., Zheng, Y., Shen, Z., and Wan, X. (2010). Alkoxy tail length dependence of gelation ability and supramolecular chirality of sugar-appended organogelators. Langmuir, 26, 15508-15515.
    [26] Rizkiana, M.F., Balamurugan, R. and Liu, J.H. (2015). The effect of meta versus para substitution on the aggregation of bis-cholesteryl appended 2,6-disubstituted pyridine-based gelators. Royal Society of Chemistry, 39, 6068-6075.
    [27] Prabhu, D.D., Sivadas, A. P. and Das, S. (2014). Solvent assisted fluorescence modulation of a C3-symmetric organogelator. Royal Society of Chemistry, 2, 7039-7046.
    [28] Balamurugan, R., Wu, K.M., Chien, C.C. and Liu, J.H. (2014). Structure-property relationships of symmetrical and asymmetrical azobenzene derivatives as gelators and their self-assemmblies. Royal Society of Chemistry, 10, 8963-8970.
    [29] Kumar, T., A., Le, K., V., Aya, S., Kang, S., Araoko, F., Ishikawa, K., Dhara, S. and Takezoe, H. (2012). Anchoring transition in a nematic liquid crystal doped with chiral agents. Phase Transitions, 85, 888-899.
    [30] Dierking, I. (2003). Textures of Liquid Crystals. Druckhaus Darmstadt GmbH, Darmstadt: Germany.

    下載圖示 校內:2019-02-15公開
    校外:2019-02-15公開
    QR CODE