| 研究生: |
王士銘 Wang, Shih-Ming |
|---|---|
| 論文名稱: |
利用掃描式熱吸收電子顯微術量化缺陷濃度 Quantitative measurements of vacancy defects using scanning electron thermal absorbance microscopy |
| 指導教授: |
張怡玲
Chang, I-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 空位缺陷 、掃描式熱吸收電子顯微術 、直接熱吸收測量 |
| 外文關鍵詞: | Vacancy defect, Scanning electron thermal absorbance microscopy, Direct thermal absorbance measurement |
| 相關次數: | 點閱:67 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體材料中的空位缺陷會降低半導體元件的性能,然而經常使用的表徵工具很難去定量測量出它們的密度,常見的定量方法有阿基米德法(Archimedes method)、熱膨脹差 分 法 (Differential thermal expansion method) 以 及 正 電 子 湮 滅 譜 (Positron annihilation spectroscopy),但它們都難以達到奈米尺度。
之前我們已經成功地證明掃描式電子顯微鏡(Scanning Electron Microscope, SEM)中的直接熱吸收測量可用於奈米級的原子序分析,在此篇論文中,我進一步的探討此方法是否具有定量空位缺陷濃度的能力。我首先利用 CASINO Monte Carlo program 模擬缺陷變化與熱吸收的關係,並藉由 Si3N4 奈米線堆疊出來的凹凸處與陽極氧化鋁(Anodic Aluminum Oxide, AAO)樣品的表面缺陷進行驗證,接著比較直接熱吸收平台中的低應力(Low-stress)、多矽(Si-rich)的氮化矽(SiNx , 0 < x <1.33)與一般氮化矽(Si3N4)奈米線發現因矽含量的多寡造成兩種同樣的化合物其熱吸收有所差異。我利用 Si3N4奈米線求得 SiNx 中的 x,並且檢測 SiC 奈米粒子與奈米線中的缺陷,其空位缺陷是使用螢光(Photoluminescence, PL)光譜來識別的。我最後量化了 SnS 樣品的空位缺陷並配合阿基米德法進行驗證。根據以上結果我成功的證明掃描式熱吸收電子顯微術是具有在奈米尺度定量空位缺陷濃度的能力。
In semiconductor materials, vacancy defects can reduce the performance of semiconductor devices. However, it is difficult to quantitatively measure their density using commonly used characterization techniques. Common quantitative methods include the Archimedes method, differential thermal expansion method, and positron annihilation spectroscopy. However, they are difficult to achieve at the nanoscale.
In our previous work, we successfully demonstrated that direct thermal absorption measurement in scanning electron microscopy (SEM) is suitable for nanoscale atomic composition analysis. In this study, I further investigated whether this method has the capability to quantitatively analyze vacancy defects. I first simulated the relationship between defect variations and thermal absorption using the CASINO Monte Carlo program. I validated my findings by examining the surface defects of Si3N4 nanowires fabricated with an uneven surface and anodic aluminum oxide (AAO) samples. I then compared the thermal absorption of low stress, Si-rich SiNx (0 < x < 1.33) nanowires with conventional Si3N4 nanowires. I found that the silicon content in the two compounds led to differences in thermal absorption. By determining the value of x using Si3N4 nanowires, I detected defects in SiC nanoparticles and nanowires, whose vacancy defects are identified using photoluminescence (PL). Finally, I quantified the vacancy defects in SnS samples and validated them using the Archimedes method. Based on these results, I successfully demonstrated that scanning thermal absorption electron microscopy has the capability for quantitative vacancy defect analysis at the nanoscale.
[1] Bogner, A., Jouneau, P. H., Thollet, G., Basset, D., & Gauthier, C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron, 38(4), 390-401, 2007.
[2] Gajapathi, S. S., Mitra, S. K., & Mendez, P. F. Part I: Development of new heat source model applicable to micro electron beam welding. Science and Technology of Welding and Joining, 17(6), 429-434, 2012.
[3] Kanaya, K. A., & Okayama, S. Penetration and energy-loss theory of electrons in solid targets. Journal of Physics D: Applied Physics, 5(1), 43, 1972.
[4] Yuan, P., Wu, J. Y., Ogletree, D. F., Urban, J. J., Dames, C., & Ma, Y. Adapting the electron beam from sem as a quantitative heating source for nanoscale thermal metrology. Nano letters, 20(5), 3019-3029, 2020.
[5] Lin, C. C., Wang, S. M., Chen, B. Y., Chi, C. H., Chang, I. L., & Chang, C. W. Scanning Electron Thermal Absorbance Microscopy for Light Element Detection and Atomic Number Analysis. Nano letters, 22(7), 2667-2673, 2022.
[6] Simmons, R. O., & Balluffi, R. W. Measurements of equilibrium vacancy concentrations in aluminum. Physical Review, 117(1), 52, 1960.
[7] Tuomisto, F., & Makkonen, I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Reviews of Modern Physics, 85(4), 1583, 2013
[8] Kwapisz, R., Cone, R. L., & Thiel, C. W. Quantifying antisite defect concentrations in yttrium aluminum garnet by high-precision density analysis. Journal of Luminescence, 252, 119408, 2022.
[9] "NCSU Positronium Annihilation Lifetime Spectrometer" Retrieved from https://nrp.ne.ncsu.edu/user-facilities/intense-positron-beam/.
[10] Antonis Nanakoudis, "SEM: Types of Electrons and the Information They Provide" (11. 21. 2019) Retrieved from https://www.thermofisher.com/blog/materials/semsignal-types-electrons-and-the-information-they-provide/
[11] Cid, A. G., Rosenkranz, R., Löffler, M., Clausner, A., Standke, Y., & Zschech, E. Quantitative analysis of backscattered electron (BSE) contrast using low voltage scanning electron microscopy (LVSEM) and its application to Al0. 22Ga0. 78N/GaN layers. Ultramicroscopy, 195, 47-52, 2018.
[12] "Energy-dispersive X-ray spectroscopy" (23 June, 2022) from Wikipedia Retrieved from https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy 60
[13] Demers, H., Poirier‐Demers, N., Couture, A. R., Joly, D., Guilmain, M., de Jonge, N., & Drouin, D. Three‐dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning, 33(3), 135-146, 2011.
[14] Browning, R., Li, T. Z., Chui, B., Ye, J., Pease, R. F. W., Czyżewski, Z., & Joy, D. C. Empirical forms for the electron/atom elastic scattering cross sections from 0.1 to 30 keV. Journal of Applied Physics, 76(4), 2016-2022, 1994.
[15] Joy, D. C., & Luo, S. An empirical stopping power relationship for low‐energy electrons. Scanning, 11(4), 176-180, 1989.
[16] Lowney, J. R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology. Scanning: The Journal of Scanning Microscopies, 18(4), 301-306, 1996.
[17] Castelletto, S., Barbiero, M., Charnley, M., Boretti, A., & Gu, M. Imaging with nanometer resolution using optically active defects in silicon carbide. Physical Review Applied, 14(3), 034021, 2020.
[18] Schultz, P. A., Van Ginhoven, R. M., & Edwards, A. H. Theoretical study of intrinsic defects in cubic silicon carbide 3 C-SiC. Physical Review B, 103(19), 195202, 2021.
[19] Itoh, H., Kawasuso, A., Ohshima, T., Yoshikawa, M., Nashiyama, I., Tanigawa, S., ... & Yoshida, S. Intrinsic defects in cubic silicon carbide. physica status solidi (a), 162(1), 173-198, 1997.