| 研究生: |
黃威銘 Huang, Wei-Ming |
|---|---|
| 論文名稱: |
具太陽光增強電容性能之氧化鈉鎢奈米線透明可撓式全固態超級電容器的製備 Preparation of sodium tungsten oxide nanowires-based transparent flexible all-solid-state supercapacitors with capacitance enhancement by solar light |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 超級電容器 、透明 、可撓式 、太陽熱 、氧化鈉鎢 |
| 外文關鍵詞: | supercapacitor, transparent, flexible, solar thermal, sodium tungsten oxide |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展一具有太陽光熱增強性能之透明可撓式全固態超級電容器。首先,分別以多元醇法與水熱法合成銀奈米線(AgNWs)和氧化鈉鎢(NaxWO3)奈米線。其次,將銀奈米線塗佈在聚對苯二甲酸乙二酯(PET)薄膜上,然後再將氧化鈉鎢奈米線與聚(3,4-乙撐二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)依序塗佈其上。所得透明可撓式超級電容器電極可展現電容特性,在1.0 M H2SO4中,其面電容在電流密度0.15 mA cm-2時為3.255 mF cm-2。最後,以上述電極為負極,塗佈PEDOT:PSS之PET為正極,PAA/H2SO4為膠態電解質,組成透明可撓式非對稱型全固態超級電容器。其具有54.9%之光透過率及顯著的太陽光熱增強電容特性,在太陽光照射下,其面電容增強17.7%,由0.282提升至0.332 mF cm-2。此增強效應歸諸於氧化鈉鎢照射太陽光時因光熱轉換引起溫度上升而使離子擴散速率提高所導致,進一步的動力學研究確認了此太陽光熱增強之電容主要係由擴散限制程序所貢獻。此外,能量密度和功率密度皆可藉太陽光照射而提升。在未照光與照射太陽光下,經2000次的充放電循環後,其電容分別保留初始值之80%與70.1%。所有結果證實本研究所發展 之透明可撓式全固態超級電容器具良好穩定性及顯著的太陽光熱增強電容性能。
In this thesis, a transparent flexible all-solid-state supercapacitor with solar thermal-enhanced performance was developed. Firstly, silver nanowires (AgNWs) and sodium tungsten oxide (NaxWO3) nanowires were synthesized by polyol and hydrothermal methods separately. Secondly, AgNWs were coated on polyethylene terephthalate (PET) film. Then, NaxWO3 nanowires and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) were coated on it sequentially. The resulting transparent flexible supercapacitor electrode could exhibit the capacitive property. Its areal capacitance was 3.255 mF cm-2 in 1.0 M H2SO4 at the current density of 0.15 mA cm-2. Finally, the transparent flexible asymmetric all-solid-state supercapacitor was fabricated using the above electrode as the negative electrode, PEDOT:PSS-coated PET film as the positive electrode, and PAA/H2SO4 gel as the electrolyte. It had a transmittance of 54.9% and a significant solar thermal enhanced capacitive property. Under solar illumination, its areal capacitance was 17.7% enhanced, from 0.282 to 0.332 mF cm-2. This enhancement effect could be referred to the increased ion diffusion rate which was resulted by the raising of temperature via the photothermal conversion of NaxWO3 under solar illumination. The further kinetic study confirmed that the solar thermal-enhanced capacitance was mainly contributed by the diffusion-limited process. Moreover, it was found that both the energy density and power density could be enhanced by solar illumination. Also, after 2000 charge/discharge cycles under the conditions without and with solar illumination, this supercapacitor showed 80% and 70.1% retention, respectively. All results demonstrated that the transparent flexible all-solid-state supercapacitor developed in this study had good stability and significant solar thermal enhanced capacitive performance.
[1] A. Burke, Ultracapacitors: why, how, and where is the technology, Journal of Power Sources, 91(1), 37–50, 2000.
[2] P. Simon and Yury Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7(11), 845–854, 2008.
[3] R. Kötza and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45(15-16), 2483–2498, 2000.
[4] Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She and Z. Zheng, Waterproof, ultrahigh areal‐capacitance, wearable supercapacitor fabrics, Advanced Materials, 29(19), 1606679, 2017.
[5] I. Ryu, M. Yang, H. Kwon, H. K. Park, Y. R. Do, S. B. Lee, and S. Yim, Coaxial RuO2–ITO nanopillars for transparent supercapacitor application, Langmuir, 30(6), 1704–1709, 2014.
[6] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44, 7484–7539, 2015.
[7] M. Zhao, Y. Li, F. Lin, Y. Xu, L. Chen, W. Jiang, T. Jiang, S. Yanga and Y. Wang, A quasi-solid-state photothermal supercapacitor via enhanced solar energy harvest, Journal of Materials Chemistry A, 8, 1829–1836, 2020.
[8] T. Akter and W. S. Kim, Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires, ACS Applied Materials & Interfaces, 4(4), 1855–1859, 2012.
[9] J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera and R. Pacios, Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes, Solar Energy Materials and Solar Cells, 102, 148–152, 2012.
[10] Z. Zhao, S. Yin, C. Guo and T. Sato, CsxWO3 Nanoparticles for the near-infrared shielding film, Journal of Nanoscience and Nanotechnology, 15(9), 7173–7176, 2015.
[11] S. Qi, X. Xiao, Y. Lu, C. Huan, Y. Zhan, H. Liu and G. Xu, A facile method to synthesize small-sized and superior crystalline Cs0.32WO3 nanoparticles for transparent NIR shielding coatings, CrystEngComm, 21(21), 3264–3272, 2019.
[12] W. Zhang, L. Lu and X. Xu, Thermal and daylighting performance of glass window using a newly developed transparent heat insulated coating, Energy Procedia, 158, 1080–1085, 2019.
[13] M. Zhang and J. T. W. Yeow, A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite, Carbon, 156, 339–345, 2020.
[14] W. Yan, J. Li, G. Zhang, L. Wang and D. Ho, A synergistic self-assembled 3D PEDOT:PSS/graphene composite sponge for stretchable microsupercapacitors, Journal of Materials Chemistry A, 8(2), 554–564, 2020.
[15] S. Bontapalle and S. Varughese. Understanding the mechanism of ageing and a method to improve the ageing resistance of conducting PEDOT:PSS films, Polymer Degradation and Stability, 171, 109025, 2020.
[16] P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y, Tu, Z. Huang and Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications, Materials Science and Engineering: B, 223, 1–23, 2017.
[17] P. Jiang, S.‐Y. Li, S.‐S. Xie, Y. Gao and L. Song, Machinable Long PVP-stabilized silver nanowires, Chemistry – A European Journal, 10(19), 4817–4821, 2004.
[18] R. Yang, C. Sui, J. Gong and L. Qu, Silver nanowires prepared by modified AAO template method, Materials Letters, 61(3) 900–903, 2007.
[19] G. Kawamura, H. Muto and A. Matsuda, Hard template synthesis of metal nanowires, Frontiers in Chemistry, 2(104), 2014.
[20] M. H. Huang, A. Choudrey and P. Yang, Ag nanowire formation within mesoporous silica, Chemical Communications, 12, 1063–1064, 2000.
[21] M. Yang, F. Qu, Y. Li, Y. He, G. Shen and R. Yu, Direct electrochemistry of hemoglobin in gold nanowire array, Biosensors and Bioelectronics, 23(3), 414–420, 2007.
[22] N. R. Jana, L. Gearheart and C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications, 7, 617–618, 2001.
[23] A. Henglein and M. Giersig, Formation of colloidal silver nanoparticles: capping action of citrate, The Journal of Physical Chemistry B, 103(44), 9533–9539, 1999.
[24] L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov and Y. S. Yan, Nanowire arrays electrodeposited from liquid crystalline phases, Advanced Materials, 14(1), 61–64, 2002.
[25] B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Letters, 4(9), 1733–1739, 2004.
[26] J. Ma and M. Zhan, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter, RSC advances, 4(40), 21060–21071, 2014.
[27] J. Zhu, C. Kan, Y. Wu, J. Wan, M. Han and G. Wang, A novel discovery of growth process for Ag nanowires and plausible mechanism, Journal of Nanomaterials, 2016, 2016.
[28] J.-Y. Lin, Y.-L. Hsueh and J.-J. Huang, The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method, Journal of Solid State Chemistry, 214, 2–6, 2014.
[29] T. N. Trung, V. K. Arepalli and R. Gudala, E.-T. Kim, Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films, Materials Letters, 194, 66–69, 2017.
[30] M. B. Gebeyehu, T. Fita Chala, S.-Y. Chang, C.-M. Wu and J.-Y. Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method, RSC Advances, 7(26), 16139–16148, 2017.
[31] K. Zang, Y. Du and S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications, Organic Electronics, 26, 380–385, 2015.
[32] H. Fallahi, H. Azizi, I. Ghasemi and M. Karrabi, Preparation and properties of electrically conductive, flexible and transparent silver nanowire/poly (lactic acid) nanocomposites, Organic Electronics, 44, 74–84, 2017.
[33] L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4(5), 2955–2963, 2010.
[34] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chemistry of Materials,14(11), 4736–4745, 2002.
[35] S. Wang, Y. Tian, S. Ding and Y Huang, Rapid synthesis of long silver nanowires by controlling concentration of Cu2+ ions, Materials Letters, 172, 175–178, 2016.
[36] K.E. Korte, S. E. Skrabalak and Y. Xia, Rapid synthesis of silver nanowires through a CuCl or CuCl2 mediated polyol process, Journal of Materials Chemistry, 18(4), 437–441, 2008.
[37] P. Rudolph, Handbook of Crystal Growth, 2nd Ed., Elsevier, Amsterdam, 535–575, 2015.
[38] X. He, R. He, A. Liu, X. Chen, Z. Zhao, S. Feng, N. Chen and M. Zhang, A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol, Journal of Materials Chemistry C, 2(45), 9737–9745, 2014.
[39] X. Xia, B. Yang, X. Zhang and C. Zhou, Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending, Materials Research Express, 2(7), 075009, 2015.
[40] X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yang and J. Yang, Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks, RSC Advances, 6(107), 105895–105902, 2016.
[41] Y. Cai, X. Piao, X. Yao, E. Nie, Z. Zhang and Z. Sun, A facile method to prepare silver nanowire transparent conductive film for heaters, Materials Letters, 249, 66–69, 2019
[42] Z. Yu, C. Li, D. Abbitt and J Thomas, Flexible, sandwich-like Ag-nanowire PEDOT PSS-nanopillar MnO2 high performance supercapacitors, Journal of Materials Chemistry A, 2(28), 10923–10929, 2014.
[43] M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang and R. K. Y. Li, Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding, Langmuir, 28(18) 7101–7106, 2012.
[44] A. B. V. K. Kumar, C. wan Bae, L. Piao and S. H. Kim, Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze, Materials Research Bulletin, 48(8), 2944–2949, 2013.
[45] W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen and W. Song, Fabrication of flexible transparent conductive films with silver nanowire by vacuum filtration and PET mold transfer, Journal of Materials, 32(2), 158–161, 2016.
[46] A.C. Myers, H. Huang and Y. Zhu, Wearable silver nanowire dry electrodes for electrophysiological sensing, RSC Advances, 5(15), 11627–11632, 2015.
[47] S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y. B. Lee, C. Song, H. J. Hwang, J. H. Kim, T. Hyeon and D.-H. Kim, Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy, ACS Nano, 9(6), 6626–6633, 2015.
[48] T. Y. Chen, C.M. Fan, J.Y. Wu and T. L. Lin, Hybrid silver nanowire/titanium oxides nanocomposites as anode for dye‐sensitized solar cell application, Journal of the Chinese Chemical Society, 56(6), 1244–1249, 2009.
[49] F. Liu, X. Yang, Z. Qiao, L. Zhang, B. Cao and G. Duan, Highly transparent 3D NiO-Ni/Ag-nanowires/FTO micro-supercapacitor electrodes for fully transparent electronic device purpose, Electrochimica Acta, 260, 281–289, 2018.
[50] W. H. Chen, F. W. Li and G. S. Liou, Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes, Advanced Optical Materials, 7(19), 1900632, 2019.
[51] C. Lee, Y. Oh, I. S. Yoon, S. H. Kim, B. K. Ju and J. M. Hong, Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices, Scientific reports, 8(1), 1–10, 2018.
[52] Y. Liu, J. Feng, X. L. Ou, H. Cui, M. Xu and H. B. Sun, Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices, Organic Electronics, 31, 247–252, 2016.
[53] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu and Q. Pei, Highly flexible silver nanowire electrodes for shape‐memory polymer light‐emitting diodes, Advanced Materials, 23(5), 664–668, 2011.
[54] B. T. Camica, F. Oytun, M.H. Aslan, H. J. Shin, H. Choi and F. Basarir, Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices, Journal of Colloid and Interface Science, 505, 79–86, 2017.
[55] G. Ma, Z. Zhang, K. Sun, E. Feng, H. Peng, X. Zhou, Z. Lei, High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon, Journal of Power Sources, 330, 219–230, 2016.
[56] T. Gao and B. P. Jelle, Electrochromism of hexagonal sodium tungsten bronze nanorods, Solar Energy Materials and Solar Cells, 177, 3–8, 2018.
[57] C. Guo, S. Yin, L. Huang and T. Sato, Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property, ACS Applied Materials & Interfaces, 3(7), 2794–2799, 2011.
[58] L. Bartha, A. B. Kiss and T. Szalay, Chemistry of tungsten oxide bronzes, 1st Ed., Elsevier, Amsterdam, 77–91, 1995.
[59] Z. Gu, Y. Ma, T. Zhai, B. Gao, W. Yang, J. Yao, A simple hydrothermal method for the large‐scale synthesis of single‐crystal potassium tungsten bronze nanowires, Chemistry–A European Journal, 12(29), 7717–7723, 2006.
[60] C. Guo, S. Yin, M. Yan and T. Sato, Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process, Journal of Materials Chemistry, 21(13), 5099–5105, 2011.
[61] C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan and T. Sato, Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process, Journal of Materials Chemistry, 20(38), 8227–8229, 2010.
[62] G. Yang, X. X. Liu, Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor, Journal of Power Sources, 383, 17–23, 2018.
[63] Z. Sun, X.-G. Sang, Y. Song, D. Guo, D.-Y. Feng, X. Sun and X.-X. Liu, A high performance tungsten bronze electrode in a mixed electrolyte and applications in supercapacitors, Chemical Communications, 55(95), 14323–14326, 2019.
[64] Y. Zhou, N. Li, Y. Xin, X. Cao, S. Jia and P. Jin, CsxWO3 nanoparticle-based organic polymer transparent foils: low haze, high near infrared-shielding ability and excellent photochromic stability, Journal of Materials Chemistry C, 5(25), 6251–6258, 2017.
[65] B. Zheng, Z. Han, G. Wu, Y. Liu, C. Liu and F. Ma, Synthesis of near infrared-activatable KxWO3 nanorods for photothermal therapy, Materials Letters, 212, 194–197, 2018.
[66] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinkenc, K. Maturova, R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic Electronics, 9(5), 727–734, 2008
[67] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Advanced Materials, 12(7), 481–494, 2000.
[68] S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene), Journal of Materials Chemistry, 15(21), 2077–2088, 2005.
[69] J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse, L. Schmidt-Mende, Spray-deposited PEDOT:PSS for inverted organic solar cells, Solar Energy Materials and Solar Cells, 94(12), 2371–2374, 2010.
[70] W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, Y. Lu and S. Yanga, Isopropanol-treated PEDOT:PSS as electron transport layer in polymer solar cells, Organic Electronics, 15(12), 3445–3451, 2014.
[71] H. Park, Y. Shi and J. Kong, Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells, Nanoscale, 5(19), 8934–8939, 2013.
[72] S. B. Singh, T. Kshetri, T. I. Singh, N. H. Kim and J. H. Lee, Embedded PEDOT:PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor, Chemical Engineering Journal, 359, 197–207, 2019.
[73] G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi and P. S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors, Advanced Energy Materials, 6(4), 1501882, 2016.
[74] L. Groenendaal, G. Zotti and F. Jonas, Optical, conductive and magnetic properties of electrochemically prepared alkylated poly(3,4-ethylenedioxythiophene)s, Synthetic Metals, 118(1-3), 105–109, 2001.
[75] S. K. M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. van der Gon, W. R. Salaneck and M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films, Synthetic Metals, 139(1), 1–10, 2003.
[76] J. H. Lee, Y. R. Jeong, G. Lee, S. W. Jin, Y. H. Lee, S. Y. Hong, H. Park, J. W. Kim, S.-S. Lee and J. S. Ha, Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment, ACS Applied Materials & Interfaces, 10(33), 28027–28035, 2018.
[77] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer, 45(25), 8443–8450, 2004.
[78] S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee and D.-Y. Kim, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells, Journal of Materials Chemistry, 19(47), 9045–9053, 2009.
[79] H.-Q. Cui, R.-X. Peng, W. Song, J.-F. Zhang, J.-M. Huang, L.-Q. Zhu and Z.-Y. Ge, Optimization of ethylene glycol doped PEDOT:PSS transparent electrodes for flexible organic solar cells by drop-coating method, Chinese Journal of Polymer Science, 37(8), 760–766, 2019.
[80] T. Tevi, S. W. S. Birch, S. W. Thomas and A. Takshi, Effect of Triton X-100 on the double layer capacitance and conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films, Synthetic Metals, 191, 59–65, 2019.
[81] J. S. Choi, J. H. Yim, D. W. Kim, J. K. Jeon, Y. S. Ko and Y. Kim, Effects of various imidazole-based weak bases and surfactant on the conductivity and transparency of poly(3,4-ethylenedioxythiophene) films, Synthetic Metals, 159(23-24), 2506–2511, 2009.
[82] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.‐R. Jo, B.‐J. Kim and K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution‐processed crystallization, Advanced Materials, 26(14), 2268–2272, 2014.
[83] D. Alemu, H.Y. Wei, K.C. Ho and C.W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy & Environmental Science, 5(11), 9662–9671, 2012.
[84] G.Z. Chen, Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation, Progress in Natural Science: Materials International, 23(3), 245–255, 2013.
[85] J.P. Zheng, P.J. Cygan and T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, Journal of the Electrochemical Society, 142(8), 2699, 1995.
[86] J. W. Long, D. Belanger, T. Brousse, W. Sugimoto, M. B. Sassin and O. Crosnier, Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes, MRS Bulletin, 36(7), 513–522, 2011.
[87] C. Portet, G. Yushin and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 45(13), 2511–2518, 2007.
[88] L. Wei and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy, 1(4), 552–565, 2012.
[89] H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang and Z. N. Gu, Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils, Carbon, 46(5), 822–824, 2008.
[90] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Letters, 8(9), 2664–2668, 2008.
[91] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability, Electrochemistry Communications, 10(7), 1056–1059, 2008.
[92] L. G. Beka, X. Bu, X. Li, X. Wang, C. Hana and W. Liu, A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application, RSC Advances, 9(62), 36123–36135, 2019.
[93] K. S. Ryu, X. Wu, Y.‐G. Lee and S. H. Chang, Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane, Journal of Applied Polymer Science, 89(5), 1300–1304, 2003.
[94] X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang and H. Zhu, Graphene polyaniline woven fabric composite films as flexible supercapacitor electrodes, Nanoscale, 7(16), 7318–7322, 2015.
[95] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang and C. Zhi, Nanostructured Polypyrrole as a flexible electrode material of supercapacitor, Nano Energy, 22, 422–438, 2016.
[96] J. Zhao, J. Wu, B. Li, W. Du, Q. Huang, M. Zheng, H. Xue and H. Pang, Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials, Progress in Natural Science: Materials International, 26(3), 237–242, 2016.
[97] A. Laforgue, P. Simon, C. Sarrazin and J.F. Fauvarque, Polythiophene-based supercapacitors, Journal of Power Sources, 80(1–2), 142–148, 1999.
[98] Q. Yang, S. K. Pang, K. C. Yung, Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution, Journal of Electroanalytical Chemistry, 728, 140–147, 2014.
[99] T.M. Higgins, J.N. Coleman, Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT:PSS Films, ACS Applied Materials & Interfaces, 7(30), 16495–16506, 2015.
[100] Y. Zhong, Z. Chai, Z. Liang, P. Sun, W. Xie, C. Zhao and Wenjie Mai, Electrochromic asymmetric supercapacitor windows enable direct determination of energy status by the naked eye, ACS Applied Materials & Interfaces, 9(39), 34085–34092, 2017.
[101] C.-W. Chang-Jian, E.-C. Cho, S.-C. Yen, B.-C. Ho, K.-C. Lee, J-H. Huang, Y.-S. Hsiao, Facile preparation of WO3/PEDOT PSS composite for inkjet printed electrochromic window and its performance for heat shielding, Dyes and Pigments, 148, 465–473, 2018.
[102] K. Lota, V. Khomenko and E. Frackowiak, Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites, Journal of Physics and Chemistry of Solids, 65(2–3), 295–301, 2004.
[103] T. M. Higgins and J. N. Coleman, Avoiding Resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT:PSS films, ACS Applied Materials & Interfaces, 7(30), 16495–16506, 2015.
[104] K. Chen and D. Xue, Electrochemically stabilized porous nickel foam as current collector and counter electrode in alkaline electrolyte for supercapacitor, Journal of Nanoengineering and Nanomanufacturing, 4(1), 50–55, 2014.
[105] W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhuo, S. B. Hartono and D. Hulicova-Jurcakovab, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement, Journal of Power Sources, 196(8), 4123–4127, 2011.
[106] Z. Bi, X. Li, Y. Chen, X. He, X. Xu and X. Gao, Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and prussian white, ACS Applied Materials & Interfaces, 9(35), 29872–29880, 2017.
[107] H. Farsi and Z. Barzgari, The lithiation studies of nanostructured tungsten oxide film prepared via electrochemical precipitation, Ionics, 19(10), 1349–1357, 2013.
[108] T. Y. Yun, X. Li, J. Bae, S. H. Kim and H. C. Moon, Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices, Materials & Design, 162, 45–51, 2019.
[109] A. Laheäär, P. Przygocki, Q. Abbas and F. Béguin, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochemistry Communications, 60, 21–25, 2015.
[110] J. Korvink and O. Paul, MEMS: A Practical Guide to Design, Analysis and Applications, 1st Ed., Springer Science & Business Media, Berlin, 615–646, 2010.
[111] P. Kissinger and W. Heineman, Cyclic voltammetry, Journal of Chemical Education, 60(9), 702−706, 1983.
[112] J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei and C.M. Li,Puzzles and confusions in supercapacitor and battery: Theory and solutions, Journal of Power Sources, 401, 213–223, 2018.
[113] B. Y. Chang and S. M. Park, Reflections on the history of electrochemical impedance spectroscopy, Annual Review of Analytical Chemistry, 3, 207–229, 2010.
[114] J. F. Rubinson and Y. P. Kayinamura, Charge transport in conducting polymers: insights from impedance spectroscopy, Chemical Society Reviews, 38(12), 3339–3347, 2009.
[115] J. E. B. Randles, Kinetics of rapid electrode reactions, Discussions of the Faraday Society, 1, 11–19, 1947.
[116] B. Akinwolemiwa1, C. Peng and G. Z. Chen Redox electrolytes in supercapacitors, Journal of The Electrochemical Society, 162, A5054, 2015.
[117] S. Zhang and N. Pan, Supercapacitors performance evaluation, Advanced Energy Materials, 5(6), 1401401, 2015.
[118] S. Lin, Y. Guo, X. Li, Y. Liu, Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires, Materials Letters, 152, 102–104, 2015.
[119] G. Hai, J. Huang, L. Cao, Y. Jie, J. Li and X. Wang, Shape Evolution of hierarchical W18O49 nanostructures: A systematic investigation of the growth mechanism, properties and morphology-dependent photocatalytic activities, Nanomaterials, 6(12), 240, 2016.
[120] M. Yin, L. Yu and S. Liu, Synthesis of thickness-controlled cuboid WO3 nanosheets and their exposed facets-dependent acetone sensing properties, Journal of Alloys and Compounds, 696, 490–497, 2017.
[121] S. Zhuiykov, E. Kats, B. Carey and S. Balendhran, Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature, Nanoscale, 6(24), 15029–15036, 2014.
[122] T. M. Perfecto, C. A. Zito and D. P. Volanti, Design of nanostructured WO3·0.33H2O via combination of ultrasonic spray nozzle and microwave-assisted hydrothermal methods for enhancing isopropanol gas sensing at room temperature, CrystEngComm, 19(20), 2733–2738, 2017.
[123] Y. Shigesato, A. Murayama, T. Kamimori and K. Matsuhiro, Characterization of evaporated amorphous WO3 films by Raman and FTIR spectroscopies, Applied Surface Science, 33, 804–811, 1988.
[124] N. Sharma, M. Deepa, P. Varshney and S. A. Agnihotry, FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique, Journal of Non-crystalline Solids, 306(2), 129–137, 2002.
[125] C. Balazsi, M. Farkas-Jahnke, I. Kotsis, L. Petrás and J. Pfeifer, The observation of cubic tungsten trioxide at high-temperature dehydration of tungstic acid hydrate, Solid State Ionics, 141, 411–416, 2001.
[126] C. Balázsi and J. Pfeifer, Long-term behaviour of tungsten oxide hydrate gels in an alkali containing aqueous environment, Solar Energy Materials and Solar Cells, 76(4), 577–590, 2003.
[127] M. Deepa, N. Sharma, P. Varshney, S. P. Varma and S. A. Agnihotry, FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films, Journal of Materials Science, 35(21), 5313–5318, 2000.
[128] K. Yamanaka, H. Oakamoto, H. Kidou and T Kudo, Peroxotungstic acid coated films for electrochromic display devices, Japanese Journal of Applied Physics, 25(9R), 1420, 1986.
[129] T. Gao and B. P. Jelle, Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods, The Journal of Physical Chemistry C, 117(26), 13753–13761, 2013.
[130] R. Li and J. Liu, Mechanistic investigation of the charge storage process of pseudocapacitive Fe3O4 nanorod film, Electrochimica Acta, 120, 52–56, 2014.
[131] H. Lee, S. Hong, J. Lee, Y. D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo and S. H. Ko, Highly stretchable and transparent supercapacitor by Ag–Au core–shell nanowire network with high electrochemical stability, ACS Applied Materials & Interfaces, 8(24), 15449–15458, 2016.
[132] D. S. Patil, S. A. Pawar, J. H. Kim, P. S. Patil and J. C. Shin, Facile preparation and enhanced capacitance of the Ag-PEDOT:PSS/polyaniline nanofiber network for supercapacitors, Electrochimica Acta, 213, 680–690, 2016.
[133] X. Liu, D. Li, X. Chen, W.-Y. Lai and W. Huang, Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks, ACS Applied Materials & Interfaces, 10(38), 32536–32542, 2018.
[134] M. D. Stoller and R. S. Ruoff, Best practice methods for determining an electrode material's performance for ultracapacitors, Energy & Environmental Science, 3(9), 1294–1301, 2010.
[135] V. Khomenko, E. Raymundo-Piñero, E. Frackowiak and F. Béguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Applied Physics A, 82(4), 567–573, 2006.
[136] S. Ardizzone, G. Fregonara and S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochimica Acta, 35(1), 263–267, 1990.
[137] R. D. Baronetto, N. Krstajić, S. Trasatti, eply to “note on a method to interrelate inner and outer electrode areas” by H. Vogt, Electrochimica acta, 39(16), 2359–2362, 1994.
[138] F. Yi, H. Ren, K. Dai, X. Wang, Y. Han, K. Wang, K. Li, B. Guan, J. Wang, M. Tang, J. Shan, H. Yang, M. Zheng, Z. You, D. Wei and Z. Liu, Solar thermal-driven capacitance enhancement of supercapacitors, Energy & Environmental Science, 11(8), 2016–2024, 2018.
[139] A. K. C. Gallegos and M. E. Rincón, Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells, Journal of Power Sources, 162(1), 743–747, 2006.
[140] G. A. Snook, P. Kao and A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, 196(1), 1–12, 2011.