| 研究生: |
莊隆凱 Chuang, Lung-Kai |
|---|---|
| 論文名稱: |
以Mn2O3/γ-Al2O3吸著劑高溫去除硫化氫之研究 High-Temperature Removal of Hydrogen Sulfide over Mn2O3/γ-Al2O3 Sorbent |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 吸著劑 、硫化氫 |
| 外文關鍵詞: | hydrogen sulfide, sorbent |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現在商業運轉之大型煤炭氣化複循環發電機組(IGCC)皆使用溼式商業化之除硫程序。然而溼式除硫必須用水來冷卻煤氣,使系統熱效率降低,為提高熱效率以降低發電及環保成本,世界各國皆在研發尋找高溫下乾式除硫方法。
本研究探討以自行製備之Mn2O3/γ-Al2O3吸著劑來吸收處理硫化氫,研究成果分成下列幾點探討:
1.比較負載於γ-Al2O3上之銅、錳、鋅、鈷、鐵、鈰系等六種吸著劑發現錳系及銅系吸著劑脫硫效能最好。
2.負載於不同載體之錳系吸著劑之脫硫效能以負載於γ-Al2O3之吸著劑脫硫效果最好,負載於SiO2之吸著劑脫硫效果次之,負載於TiO2之吸著劑脫硫效果最差。
3.以不同操作參數來觀察吸著劑利用率改變的情形,發現吸著劑利用率隨溫度升高、一氧化碳濃度增加、氫氣濃度減小而增加;而空間流速及硫化氫進流濃度則對吸著劑利用率無顯著之影響。
4.長期操作實驗部份,我們發現經過再生後再進行脫硫之吸著劑利用率明顯下降。由孔洞分析數據推論吸著劑再生後有燒結的情形。EDX分析顯示再生後之吸著劑內有硫元素存在,XPS圖譜進一步確認吸著劑中殘留之硫為硫酸根及亞硫酸根。最後在XRD圖譜中發現再生後之吸著劑只剩下γ-Al2O3特性波峰。
5.我們由動力研究發現,第一型衰退模式較符合實驗數據,所求得之活化能為86.9 KJ/mol。
Most large-scale existing commercial coal-based IGCC plants use wet scrubbers to remove H2S, but there are too much heat losses in the process. Therefore, it is necessary to find out a feasible dry desulfurization process operating under high temperature to raise the thermal efficiency and reduce the cost of the IGCC.
Desulfurization of hot syngas using homemade Mn2O3/γ-Al2O3 sorbent in a fixed bed reactor was conducted in this study. The explanation of results can be divided into five major parts.
1.The Zinc based sorbent and Copper based sorbent have the highest sorbent utilization among all the metal oxide sorbents supported on the γ-Al2O3 that we have tested.
2.The Manganese based sorbent supported on γ-Al2O3 has higher sorbent utilization than that supported on SiO2 and the Manganese based sorbent supported on TiO2 has the worst performance.
3.The effects of operating factors, such as inlet temperature, space velocity, CO inlet concentration, H2 inlet concentration and H2S inlet concentration on the absorption of H2S were performed. The results show that the sorbent utilization increases with the inlet temperature and CO concentration, and decreases as the H2 concentration increases. H2S concentration and space velocity, however, don’t change the sorbent utilization significantly.
4.The activity of the sorbent decreases significantly while sulfuration is operating after regeneration. Some instruments were employed to determine the characteristics of the sorbents after regeneration, such as BET, EDX, XPS, and XRD. From the results of pore analyses, we infer that sintering happens during regeneration. EDX spectra show that sulfur still exists in the sorbent after regeneration and we find that the forms of sulfur existed in the sorbent are sulfate and sulfite from XPS spectra. The peaks relating to Manganese disappear and only γ-Al2O3 can be identified in the XRD spectra of regenerated sorbents.
5.In the operating range of this study, we can find that Deactivation model typeⅠ is the most suitable model to fit the experimental data. We obtain the activity energy Ea=86.9 KJ/mole.
1.朱信、曾明宗,「煤炭氣化複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告,p.26-29,1991。
2.台灣電力公司,「煤炭氣化技術及淨化技術之研究」,台灣電力公司研究發展專題,p.45,1994。
3.薛少俊,「潔淨燃煤發電技術降低二氧化碳排放量之研究」,能源季刊,第28卷,第3期,p.59-70,1998。
4.劉陽秋,「燒煤發電之先進技術」,台電工程月刊,第571期,p.1-8,1995。
5.Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, p.197-208, 2001.
6.勞工安全衛生研究所MSDS資料庫:http: //www.iosh.gov.tw/frame.htm。
7.王志成、李福文,「硫化氫新處理技術:SULFA CHECK 與現行方法之比較」,工業污染防治,第30期,p.197-202,1989。
8.Nagl, G., “Controlling H2S emission”, Chemical Engineering”, p.125- 131,1997.
9.Schaack, J. P., Chan, F., “H2S Scavenging-1”, Oil & Gas Journal, p.51- 55, 1989.
10.Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 20, p.847-851, 1993.
11.林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,成大環境工程研究所碩士論文,1996。
12.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation-Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 28, p.931-940, 1989.
13.Westmoreland, P. R., Harrison, D. P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases”, Envi. Sci. & Tech., 10(7), p.659-661, 1976.
14.Pineda, M., Palacios, J. M., Cilleruelo, C., Garcia, E., Ibarra, J. V., “Modelling of Performance of Zinc Ferrites as High-Temperature Desulfurizing Sorbents in a Fixed-Bed Reactor”, Fuel, 76(7), p.567-573, 1997.
15.Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., “Reactivity and Durability of Iron Oxide High Temperaure Desulfurization Sorbents”, Energy Fuels, 7(5), p.632 –638, 1993.
16.Van der Ham, Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 42, p.117-136.
17.Ayala, R. E., Marsh, D. W., “Characterization and Long Range Reactivity of Zinc Ferrite in High Temperature Desulfurization Processes”, Ind Eng Chem Res, 30, p.55-60.
18.Lew, S., Jothimurugesan, K., Stephanopoulos, M. F., “High Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide-Titanium Dioxide Sorbents”, Ind Eng Chem Res, 28(5), p.535-541, 1989.
19.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics”, Chem Eng Sci, 43(11), p.3005-3013, 1988.
20.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem Eng Sci, 44(2), p.215-224.
21.Pineda, M., Palacios, J. M., Cilleruelo, C., Garcia, E., Ibarra, J. V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl Surf Sci, 119, p.1-10.
22.Mojtahedi, W., Salo, K., Abbasian, J., “Desulfurization of Hot Coal Gas in Fluidized Bed with Regenerable Zinc Titanate Sorbents”, Fuel Process Technol , 7, p.55-65, 1994.
23.Lew, S., Jothimurugesan, K., Flytzani-Stephanopoulo, M., “Sulfidation of Zinc Titanate and Zinc Oxide Solids”, Ind. Eng. Chem. Res., 31, p.1890-1899, 1992.
24.Swisher, J. H., Yang, J., Gupta, R. P., “attirtion-resistant zinc titanate sorbent for sulfur”, Ind. Eng. Chem. Res., 34, p.4463-4471, 1995.
25.Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents,Part 1:cyclic tests”, Energy Fuels, 9, p.782-801, 1995.
26.Poston, J. A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind Eng Chem Res , 35(3), p.875-882, 1996.
27.Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind Eng Chem Res , 36(1), p.187-196, 1997.
28.吳榮宗,「 工業觸媒概論」,國興出版社,1989。
29.Patrick, V., Gavalas, G. R., Sharma, P. K., “Reduction, Sulfidation, and Regeneration of Mixed Iron-aluminum Oxide Sorbents”, Ind. Eng. Chem. Res., 32, p.519-532, 1993.
30.Pham-Huu, C., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent- part 2 Perparation and characterization”, J. Chem. Soc. Faraday Trans., 94, p.443-450, 1998.
31.Yasyerli, S., Dogu, G., Dogu, T., “Activities of Copper Oxides and Cu-V and Cu-Mo Mixed Oxides for H2S Removal in the Presence and Absence of Hydrogen and Prediction of Deactivation Model”, Ind. Eng. Chem. Res., 40(23), p5206-5214, 2001.
32.Kyotani, T., Kawashima, H., Tomita, A., Palmer, A., Furimsky, E., “Removal of H2S from Hot Gas in the Presence of Cu-Containing Sorbents”, Fuel, 68, p.74, 1989.
33.Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 23, p.218, 1989.
34.Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice 2E”, McGraw-Hill, Inc, 1991.
35.Hiemenz, P. C., “Principles of Colloid and Surface Chemistry”, M. Dekker, 1986.
36.Skoog D. A., Holler F. J., Nieman T. A., “Principles of Instaumental Analysis 5E”, Saunders College Publishing, 1998.
37.Niemantsverdriet, J. W., “Spectroscopy in Catalysis”, Weinheim, 1993.
38.Lowell, S., Shields, J. E., “Powder Surface Area and Porosity”, Chapman and Hall, 1984.
39.李俊章,「空氣污染專責人員訓練教材甲級第八冊-環境空氣污染採樣分析原理」,環保署環境保護人員訓練所,1996。
40.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation-Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 28, p.931-940, 1989.
41.Patrick, V., Gavalas, G. R., Sharma, P. K., “Reduction, Sulfidation, and Regeneration of Mixed Iron-aluminum Oxide Sorbents”, Ind. Eng. Chem. Res., 32, p.519-532, 1993.
42.Zeng, Y., Zhang, S., Groves, F. R., Harrison, D. P., “High Temperature Gas Desulfurization with Elemental Sulfur Production”, Chem. Eng. Sci., 54(15), p.3007-3017, 1999.
43.國立成功大學西文資料庫,理工學科資料庫,參考工具書型,「PCPDFWIN-POWDER DIFFRATION FILE」,International Center for Diffration Data出版,http://cdnet.lib.ncku.edu.tw/doc/pdf.htm.