簡易檢索 / 詳目顯示

研究生: 王立婷
Wang, Li-Ting
論文名稱: 應用疾病動物模式研究靈芝及其三萜類對腹主動脈瘤之療效
The therapeutic effect of Ganoderma lucidum and its triterpenoids in abdominal aortic aneurysms in mice
指導教授: 莫凡毅
Mo, Fan-E
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 48
中文關鍵詞: 靈芝零之三萜類腹主動脈瘤氧化壓力
外文關鍵詞: Ganoderma Lucidum, triterpenoids, abdominal aortic aneurysm, oxidative stress
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動脈瘤是一種血管壁結構脆弱而導致在血流壓力下血管管徑擴大的疾病,較常好發於腹主動脈,具有主動脈破裂而導致死亡的高風險,雖然手術治療可以改善腹主動脈瘤的預後,但目前還沒有有效的藥物可用。主動脈瘤的生成與血管壁中的發炎反應和氧化壓力密切相關。靈芝是一種被廣泛接受的中藥材,而其萃取出的靈芝三萜類具有抗氧化和抗發炎之功效。我們初步的結果顯示靈芝具有維持主動脈壁完整性的治療作用,從而在血管張力素II型 (Angiotensin II, Ang II) 與氯化鈣(CaCl2)誘導的主動脈瘤小鼠模式中達到抑制主動脈瘤生成的療效,因此本研究假設靈芝及靈芝三萜類能夠透過其抗氧化與抗發炎之能力抑制腹主動脈瘤。我們發現靈芝可以保護血管平滑肌細胞並降低血管壁中的氧化壓力與發炎反應,進而維持血管壁的構造以及彈性蛋白的完整,抑制主動脈瘤之生成。而在觀察到靈芝三萜類的自由基清除能力後,我們發現靈芝三萜類能夠降低過氧化氫(H2O2)對平滑肌細胞所誘導的活性氧類(Reactive oxygen species, ROS)累積與凋亡反應,其可能為透過活化核因子紅細胞2相關因子(Nrf2)及其下游基因血鐵質氧化酶¬1(HO-1)來開啟細胞抗氧化之作用。綜合結果所述,靈芝及其三萜類可以透過其抗氧化功效來保護血管平滑肌細胞並維持主動脈壁完整性,減緩主動脈瘤的生成。

    Abdominal aortic aneurysm (AAA) is an aortic disease with a high mortality rate due to aortic rupture. While surgical treatments can improve the prognosis of AAA, no effective drugs are currently available. The progression of AAA is closely associated with inflammation and oxidative stress in the arterial wall. Ganoderma lucidum (GL) is a species of Ganoderma mushroom and is a traditional Chinese herbal medicine widely accepted as a nutritional supplement. Among the bioactive compounds of Ganoderma, Ganoderma triterpenoids (GTs) possess antioxidant and anti-inflammatory activities. Our preliminary results showed the therapeutic effect of Ganoderma in maintaining the aortic wall integrity, thereby suppressing Ang II- and CaCl2-induced AA in mice, therefore we hypothesized that GL and GTs attenuate AAA through their antioxidant and anti-inflammatory activities. Our results demonstrated that GL protected the aortic wall from structural disruption and medial elastic membrane breakdown. GL also prevented vascular smooth muscle cells (VSMCs) apoptosis and AAA formation through the antioxidant and anti-inflammatory activities. Following our observation on the free radical scavenging properties of GTs, we found that GTs reduced the intracellular reactive oxygen species (ROS) levels and apoptosis induced by H2O2 in VSMCs. GTs were also found to induce nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target gene, heme oxygenase-1 (HO-1), potentially activating the expression of antioxidant proteins. Here, we demonstrate the novel therapeutic properties of GL and GTs for AAA by inhibiting oxidative stress to protect VSMCs and maintain the aortic wall integrity.

    中文摘要 III ABSTRACT IV CONTENTS V 1 INTRODUCTION 1 1.1 Abdominal aortic aneurysm (AAA) 1 1.2 Inflammation in AAA 2 1.3 Oxidative stress in AAA 3 1.4 The Antioxidant Role of the Nrf2/HO-1 Pathway 4 1.5 Ganoderma Lucidum (GL) 4 1.6 Ganoderma Triterpenoids (GTs) 5 1.7 The antiatherogenic effects of GTs 5 1.8 The therapeutic effect of GL in Angiotensin Ⅱ-induced AAA 6 1.9 Hypothesis 6 2 MATERIALS AND METHODS 7 2.1 Chemicals 7 2.2 Antibodies 8 2.3 Equipment 8 2.4 Solution formula 9 2.5 Mouse model 13 2.6 Tissue preparation 14 2.7 Hematoxylin and Eosin (H&E) staining 14 2.8 Elastin Van Gieson’s staining 15 2.9 Masson Trichrome staining 15 2.10 Alizarin Red S staining 16 2.11 Tissue immunofluorescence staining 17 2.12 Cell culture of VSMC 17 2.13 DPPH assay 18 2.14 ROS measurements 18 2.14 Annexin V/PI staining 19 2.15 Western blotting 19 2.16 RNA isolation and qRT-PCR 19 2.17 Statistical analysis 20 3 RESULTS 21 3.1 GL alleviated CaCl2 -induced AAA formation and progression 21 3.2 GL maintained structural integrity of the aortic wall in CaCl2 -induced AAA 21 3.3 GL prevented VSMC loss through alleviating oxidative stress and inflammation 22 3.4 GTs attenuated AAA through the antioxidant activity 22 3.5 GTs may alleviate oxidative stress through Nrf2/HO-1 pathway 23 4 DISCUSSION 24 5 REFERENCES 27 6 FIGURES 32 Figure 1. GL prevented Ang II-induced aortic aneurysms. 32 Figure 2. GL protected the aorta from angiotensin II-associated aneurysm formation in the ApoE-/- mice. 33 Figure 3. GL reduced VSMC apoptosis in the Ang II-induced ApoE-/- mice. 34 Figure 4. GL alleviated AAA formation and progression. 35 Figure 5. GL attenuated AAA formation. 36 Figure 6. GL prevented VSMC loss. 37 Figure 7. GL alleviated oxidative stress. 37 Figure 8. GL alleviated inflammation. 38 Figure 9. GTs have free radical scavenging activity. 39 Figure 10. GTs attenuated AAA through antioxidant activities. 40 Figure 11. GTs inhibited oxidative stress through Nrf2/HO-1 pathway. 41

    1. Adhikari, N., Shekar, K. C., Staggs, R., Win, Z., Steucke, K., Lin, Y. W., Wei, L. N., Alford, P., & Hall, J. L. (2015). Guidelines for the isolation and characterization of murine vascular smooth muscle cells. A report from the International Society of Cardiovascular Translational Research. J Cardiovasc Transl Res, 8(3), 158-163. https://doi.org/10.1007/s12265-015-9616-6
    2. Ahmad, M. F. (2018). Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother, 107, 507-519. https://doi.org/10.1016/j.biopha.2018.08.036
    3. Azarbal, A. F., Repella, T., Carlson, E., Manalo, E. C., Palanuk, B., Vatankhah, N., Zientek, K., Keene, D. R., Zhang, W., Abraham, C. Z., Moneta, G. L., Landry, G. J., Alkayed, N. J., & Sakai, L. Y. (2022). A Novel Model of Tobacco Smoke-Mediated Aortic Injury. Vasc Endovascular Surg, 56(3), 244-252. https://doi.org/10.1177/15385744211063054
    4. Baird, L., & Yamamoto, M. (2020). The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol, 40(13). https://doi.org/10.1128/mcb.00099-20
    5. Boh, B., Berovic, M., Zhang, J., & Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev, 13, 265-301. https://doi.org/10.1016/s1387-2656(07)13010-6
    6. Bohlin, S., Fröjd, C., Wanhainen, A., & Björck, M. (2014). Change in smoking habits after having been screened for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg, 48(2), 138-143. https://doi.org/10.1016/j.ejvs.2014.04.010
    7. Chen, D.-H., Shiou, W.-Y., Wang, K.-C., Huang, S.-Y., Shie, Y.-T., Tsai, C.-M., Shie, J.-F., & Chen, K.-D. (1999). Chemotaxonomy of Triterpenoid Pattern of HPLC of Ganoderma lucidum and Ganoderma tsugae. Journal of the Chinese Chemical Society, 46(1), 47-51. https://doi.org/https://doi.org/10.1002/jccs.199900006
    8. Cör, D., Knez, Ž., & Knez Hrnčič, M. (2018). Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules, 23(3). https://doi.org/10.3390/molecules23030649
    9. Davis, F. M., Daugherty, A., & Lu, H. S. (2019). Updates of Recent Aortic Aneurysm Research. Arterioscler Thromb Vasc Biol, 39(3), e83-e90. https://doi.org/10.1161/ATVBAHA.119.312000
    10. Dudhgaonkar, S., Thyagarajan, A., & Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int Immunopharmacol, 9(11), 1272-1280. https://doi.org/10.1016/j.intimp.2009.07.011
    11. Emeto, T. I., Moxon, J. V., Au, M., & Golledge, J. (2016). Oxidative stress and abdominal aortic aneurysm: potential treatment targets. Clinical science, 130(5), 301-315.
    https://doi.org/10.1042/CS20150547
    12. Furusho, A., Aoki, H., Ohno-Urabe, S., Nishihara, M., Hirakata, S., Nishida, N., Ito, S., Hayashi, M., Imaizumi, T., Hiromatsu, S., Akashi, H., Tanaka, H., & Fukumoto, Y. (2018). Involvement of B Cells, Immunoglobulins, and Syk in the Pathogenesis of Abdominal Aortic Aneurysm. J Am Heart Assoc, 7(6). https://doi.org/10.1161/jaha.117.007750
    13. Golledge, J., Krishna, S. M., & Wang, Y. (2022). Mouse models for abdominal aortic aneurysm. Br J Pharmacol, 179(5), 792-810. https://doi.org/10.1111/bph.15260
    14. Golledge, J., & Kuivaniemi, H. (2013). Genetics of abdominal aortic aneurysm. Curr Opin Cardiol, 28(3), 290-296. https://doi.org/10.1097/HCO.0b013e32835f0d55
    15. Hsu, P. L., Lin, Y. C., Ni, H., & Mo, F. E. (2018). Ganoderma Triterpenoids Exert Antiatherogenic Effects in Mice by Alleviating Disturbed Flow-Induced Oxidative Stress and Inflammation. Oxid Med Cell Longev, 2018, 3491703. https://doi.org/10.1155/2018/3491703
    16. Huie, C. W., & Di, X. (2004). Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Analyt Technol Biomed Life Sci, 812(1-2), 241-257. https://doi.org/10.1016/j.jchromb.2004.08.038
    17. Hunter, G. C., Dubick, M. A., Keen, C. L., & Eskelson, C. D. (1991). Effects of hypertension on aortic antioxidant status in human abdominal aneurysmal and occlusive disease. Proc Soc Exp Biol Med, 196(3), 273-279. https://doi.org/10.3181/00379727-196-43188
    18. Ishizaka, N., Sohmiya, K., Miyamura, M., Umeda, T., Tsuji, M., Katsumata, T., & Miyata, T. (2012). Infected aortic aneurysm and inflammatory aortic aneurysm—in search of an optimal differential diagnosis. Journal of cardiology, 59(2), 123-131.
    https://doi.org/10.1016/j.jjcc.2011.10.006
    19. Kent, K. C., Zwolak, R. M., Egorova, N. N., Riles, T. S., Manganaro, A., Moskowitz, A. J., Gelijns, A. C., & Greco, G. (2010). Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg, 52(3), 539-548. https://doi.org/10.1016/j.jvs.2010.05.090
    20. Kolodziejczyk-Czepas, J., Bijak, M., Saluk, J., Ponczek, M. B., Zbikowska, H. M., Nowak, P., Tsirigotis-Maniecka, M., & Pawlaczyk, I. (2015). Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic-polysaccharide conjugates. Int J Biol Macromol, 72, 1152-1158. https://doi.org/10.1016/j.ijbiomac.2014.09.032
    21. Lai, C. H., Shi, G. Y., Lee, F. T., Kuo, C. H., Cheng, T. L., Chang, B. I., Ma, C. Y., Hsu, F. C., Yang, Y. J., & Wu, H. L. (2013). Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg, 258(6), 1103-1110. https://doi.org/10.1097/SLA.0b013e31827df7cb
    22. Li, K., Zhang, K., Li, T., & Zhai, S. (2018). Primary results of abdominal aortic aneurysm screening in the at-risk residents in middle China. BMC Cardiovasc Disord, 18(1), 60. https://doi.org/10.1186/s12872-018-0793-5
    23. Lin, J., Chen, S., Yao, Y., & Yan, M. (2023). Status of diagnosis and therapy of abdominal aortic aneurysms. Front Cardiovasc Med, 10, 1199804. https://doi.org/10.3389/fcvm.2023.1199804
    24. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and molecular life sciences, 73, 3221-3247.
    25. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 73(17), 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
    26. López-Candales, A., Holmes, D. R., Liao, S., Scott, M. J., Wickline, S. A., & Thompson, R. W. (1997). Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol, 150(3), 993-1007.
    27. Mansouri, A., Reiner, Ž., Ruscica, M., Tedeschi-Reiner, E., Radbakhsh, S., Bagheri Ekta, M., & Sahebkar, A. (2022). Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases. Journal of Clinical Medicine, 11(5), 1313.
    28. McCormick, M. L., Gavrila, D., & Weintraub, N. L. (2007). Role of Oxidative Stress in the Pathogenesis of Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(3), 461-469. https://doi.org/doi:10.1161/01.ATV.0000257552.94483.14
    29. Miller Jr, F. J., Sharp, W. J., Fang, X., Oberley, L. W., Oberley, T. D., & Weintraub, N. L. (2002). Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(4), 560-565.
    30. Nosoudi, N., Nahar-Gohad, P., Sinha, A., Chowdhury, A., Gerard, P., Carsten, C. G., Gray, B. H., & Vyavahare, N. R. (2015). Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles. Circ Res, 117(11), e80-89. https://doi.org/10.1161/circresaha.115.307207
    31. Paulenka, Y., Lee, C., Tawayha, M., Dow, S., Shah, K., Henkin, S., & Mosleh, W. (2023). From Natural History to Contemporary Management of Aortic Diseases: A State-of-the-Art Review of Thoracic Aortic Aneurysm. Cardiogenetics, 13(4), 154-172. https://www.mdpi.com/2035-8148/13/4/15
    32. Puertas-Umbert, L., Almendra-Pegueros, R., Jiménez-Altayó, F., Sirvent, M., Galán, M., Martínez-González, J., & Rodríguez, C. (2023). Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond), 137(15), 1167-1194. https://doi.org/10.1042/cs20220795
    33. Quintana, R. A., & Taylor, W. R. (2019). Cellular Mechanisms of Aortic Aneurysm Formation. Circ Res, 124(4), 607-618. https://doi.org/10.1161/circresaha.118.313187
    34. Rastogi, V., Stefens, S. J. M., Houwaart, J., Verhagen, H. J. M., de Bruin, J. L., van der Pluijm, I., & Essers, J. (2022). Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne), 9, 814123. https://doi.org/10.3389/fmed.2022.814123
    35. Sagan, A., Mikolajczyk, T. P., Mrowiecki, W., MacRitchie, N., Daly, K., Meldrum, A., Migliarino, S., Delles, C., Urbanski, K., Filip, G., Kapelak, B., Maffia, P., Touyz, R., & Guzik, T. J. (2019). T Cells Are Dominant Population in Human Abdominal Aortic Aneurysms and Their Infiltration in the Perivascular Tissue Correlates With Disease Severity. Front Immunol, 10, 1979. https://doi.org/10.3389/fimmu.2019.01979
    36. Sakalihasan, N., Limet, R., & Defawe, O. D. (2005). Abdominal aortic aneurysm. Lancet, 365(9470), 1577-1589. https://doi.org/10.1016/s0140-6736(05)66459-8
    37. Salata, K., Syed, M., Hussain, M. A., de Mestral, C., Greco, E., Mamdani, M., Tu, J. V., Forbes, T. L., Bhatt, D. L., Verma, S., & Al-Omran, M. (2018). Statins Reduce Abdominal Aortic Aneurysm Growth, Rupture, and Perioperative Mortality: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 7(19), e008657. https://doi.org/10.1161/JAHA.118.008657
    38. Satta, S., Mahmoud, A. M., Wilkinson, F. L., Yvonne Alexander, M., & White, S. J. (2017). The Role of Nrf2 in Cardiovascular Function and Disease. Oxid Med Cell Longev, 2017, 9237263. https://doi.org/10.1155/2017/9237263
    39. Shimizu, K., Mitchell, R. N., & Libby, P. (2006). Inflammation and Cellular Immune Responses in Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(5), 987-994. https://doi.org/doi:10.1161/01.ATV.0000214999.12921.4f
    40. Shin, M. H., Moon, Y. J., Seo, J. E., Lee, Y., Kim, K. H., & Chung, J. H. (2008). Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic Biol Med, 44(4), 635-645. https://doi.org/10.1016/j.freeradbiomed.2007.10.053
    41. Smidfelt, K., Nordanstig, J., Davidsson, A., Törngren, K., & Langenskiöld, M. (2021). Misdiagnosis of ruptured abdominal aortic aneurysms is common and is associated with increased mortality. Journal of Vascular Surgery, 73(2), 476-483. e473.
    42. Smina, T. P., Mathew, J., Janardhanan, K. K., & Devasagayam, T. P. (2011). Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ Toxicol Pharmacol, 32(3), 438-446. https://doi.org/10.1016/j.etap.2011.08.011
    43. Song, P., He, Y., Adeloye, D., Zhu, Y., Ye, X., Yi, Q., Rahimi, K., & Rudan, I. (2023). The Global and Regional Prevalence of Abdominal Aortic Aneurysms: A Systematic Review and Modeling Analysis. Ann Surg, 277(6), 912-919. https://doi.org/10.1097/sla.0000000000005716
    44. Vardulaki, K. A., Walker, N. M., Day, N. E., Duffy, S. W., Ashton, H. A., & Scott, R. A. P. (2002). Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. British Journal of Surgery, 87(2), 195-200. https://doi.org/10.1046/j.1365-2168.2000.01353.x
    45. Xu, J. W., Zhao, W., & Zhong, J. J. (2010). Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol, 87(2), 457-466. https://doi.org/10.1007/s00253-010-2576-5
    46. Xu, Z., Chen, X., Zhong, Z., Chen, L., & Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am J Chin Med, 39(1), 15-27. https://doi.org/10.1142/s0192415x11008610
    47. Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J., & Cai, Z. (2021). Abdominal aortic aneurysm: roles of inflammatory cells. Frontiers in immunology, 11, 609161.
    48. Zhou, Y., Yang, X., & Yang, Q. (2006). Recent Advances on Triterpenes from Ganoderma Mushroom. Food Reviews International, 22(3), 259-273. https://doi.org/10.1080/87559120600694739

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE