| 研究生: |
王立婷 Wang, Li-Ting |
|---|---|
| 論文名稱: |
應用疾病動物模式研究靈芝及其三萜類對腹主動脈瘤之療效 The therapeutic effect of Ganoderma lucidum and its triterpenoids in abdominal aortic aneurysms in mice |
| 指導教授: |
莫凡毅
Mo, Fan-E |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 靈芝 、零之三萜類 、腹主動脈瘤 、氧化壓力 |
| 外文關鍵詞: | Ganoderma Lucidum, triterpenoids, abdominal aortic aneurysm, oxidative stress |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動脈瘤是一種血管壁結構脆弱而導致在血流壓力下血管管徑擴大的疾病,較常好發於腹主動脈,具有主動脈破裂而導致死亡的高風險,雖然手術治療可以改善腹主動脈瘤的預後,但目前還沒有有效的藥物可用。主動脈瘤的生成與血管壁中的發炎反應和氧化壓力密切相關。靈芝是一種被廣泛接受的中藥材,而其萃取出的靈芝三萜類具有抗氧化和抗發炎之功效。我們初步的結果顯示靈芝具有維持主動脈壁完整性的治療作用,從而在血管張力素II型 (Angiotensin II, Ang II) 與氯化鈣(CaCl2)誘導的主動脈瘤小鼠模式中達到抑制主動脈瘤生成的療效,因此本研究假設靈芝及靈芝三萜類能夠透過其抗氧化與抗發炎之能力抑制腹主動脈瘤。我們發現靈芝可以保護血管平滑肌細胞並降低血管壁中的氧化壓力與發炎反應,進而維持血管壁的構造以及彈性蛋白的完整,抑制主動脈瘤之生成。而在觀察到靈芝三萜類的自由基清除能力後,我們發現靈芝三萜類能夠降低過氧化氫(H2O2)對平滑肌細胞所誘導的活性氧類(Reactive oxygen species, ROS)累積與凋亡反應,其可能為透過活化核因子紅細胞2相關因子(Nrf2)及其下游基因血鐵質氧化酶¬1(HO-1)來開啟細胞抗氧化之作用。綜合結果所述,靈芝及其三萜類可以透過其抗氧化功效來保護血管平滑肌細胞並維持主動脈壁完整性,減緩主動脈瘤的生成。
Abdominal aortic aneurysm (AAA) is an aortic disease with a high mortality rate due to aortic rupture. While surgical treatments can improve the prognosis of AAA, no effective drugs are currently available. The progression of AAA is closely associated with inflammation and oxidative stress in the arterial wall. Ganoderma lucidum (GL) is a species of Ganoderma mushroom and is a traditional Chinese herbal medicine widely accepted as a nutritional supplement. Among the bioactive compounds of Ganoderma, Ganoderma triterpenoids (GTs) possess antioxidant and anti-inflammatory activities. Our preliminary results showed the therapeutic effect of Ganoderma in maintaining the aortic wall integrity, thereby suppressing Ang II- and CaCl2-induced AA in mice, therefore we hypothesized that GL and GTs attenuate AAA through their antioxidant and anti-inflammatory activities. Our results demonstrated that GL protected the aortic wall from structural disruption and medial elastic membrane breakdown. GL also prevented vascular smooth muscle cells (VSMCs) apoptosis and AAA formation through the antioxidant and anti-inflammatory activities. Following our observation on the free radical scavenging properties of GTs, we found that GTs reduced the intracellular reactive oxygen species (ROS) levels and apoptosis induced by H2O2 in VSMCs. GTs were also found to induce nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target gene, heme oxygenase-1 (HO-1), potentially activating the expression of antioxidant proteins. Here, we demonstrate the novel therapeutic properties of GL and GTs for AAA by inhibiting oxidative stress to protect VSMCs and maintain the aortic wall integrity.
1. Adhikari, N., Shekar, K. C., Staggs, R., Win, Z., Steucke, K., Lin, Y. W., Wei, L. N., Alford, P., & Hall, J. L. (2015). Guidelines for the isolation and characterization of murine vascular smooth muscle cells. A report from the International Society of Cardiovascular Translational Research. J Cardiovasc Transl Res, 8(3), 158-163. https://doi.org/10.1007/s12265-015-9616-6
2. Ahmad, M. F. (2018). Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother, 107, 507-519. https://doi.org/10.1016/j.biopha.2018.08.036
3. Azarbal, A. F., Repella, T., Carlson, E., Manalo, E. C., Palanuk, B., Vatankhah, N., Zientek, K., Keene, D. R., Zhang, W., Abraham, C. Z., Moneta, G. L., Landry, G. J., Alkayed, N. J., & Sakai, L. Y. (2022). A Novel Model of Tobacco Smoke-Mediated Aortic Injury. Vasc Endovascular Surg, 56(3), 244-252. https://doi.org/10.1177/15385744211063054
4. Baird, L., & Yamamoto, M. (2020). The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol, 40(13). https://doi.org/10.1128/mcb.00099-20
5. Boh, B., Berovic, M., Zhang, J., & Zhi-Bin, L. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev, 13, 265-301. https://doi.org/10.1016/s1387-2656(07)13010-6
6. Bohlin, S., Fröjd, C., Wanhainen, A., & Björck, M. (2014). Change in smoking habits after having been screened for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg, 48(2), 138-143. https://doi.org/10.1016/j.ejvs.2014.04.010
7. Chen, D.-H., Shiou, W.-Y., Wang, K.-C., Huang, S.-Y., Shie, Y.-T., Tsai, C.-M., Shie, J.-F., & Chen, K.-D. (1999). Chemotaxonomy of Triterpenoid Pattern of HPLC of Ganoderma lucidum and Ganoderma tsugae. Journal of the Chinese Chemical Society, 46(1), 47-51. https://doi.org/https://doi.org/10.1002/jccs.199900006
8. Cör, D., Knez, Ž., & Knez Hrnčič, M. (2018). Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules, 23(3). https://doi.org/10.3390/molecules23030649
9. Davis, F. M., Daugherty, A., & Lu, H. S. (2019). Updates of Recent Aortic Aneurysm Research. Arterioscler Thromb Vasc Biol, 39(3), e83-e90. https://doi.org/10.1161/ATVBAHA.119.312000
10. Dudhgaonkar, S., Thyagarajan, A., & Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int Immunopharmacol, 9(11), 1272-1280. https://doi.org/10.1016/j.intimp.2009.07.011
11. Emeto, T. I., Moxon, J. V., Au, M., & Golledge, J. (2016). Oxidative stress and abdominal aortic aneurysm: potential treatment targets. Clinical science, 130(5), 301-315.
https://doi.org/10.1042/CS20150547
12. Furusho, A., Aoki, H., Ohno-Urabe, S., Nishihara, M., Hirakata, S., Nishida, N., Ito, S., Hayashi, M., Imaizumi, T., Hiromatsu, S., Akashi, H., Tanaka, H., & Fukumoto, Y. (2018). Involvement of B Cells, Immunoglobulins, and Syk in the Pathogenesis of Abdominal Aortic Aneurysm. J Am Heart Assoc, 7(6). https://doi.org/10.1161/jaha.117.007750
13. Golledge, J., Krishna, S. M., & Wang, Y. (2022). Mouse models for abdominal aortic aneurysm. Br J Pharmacol, 179(5), 792-810. https://doi.org/10.1111/bph.15260
14. Golledge, J., & Kuivaniemi, H. (2013). Genetics of abdominal aortic aneurysm. Curr Opin Cardiol, 28(3), 290-296. https://doi.org/10.1097/HCO.0b013e32835f0d55
15. Hsu, P. L., Lin, Y. C., Ni, H., & Mo, F. E. (2018). Ganoderma Triterpenoids Exert Antiatherogenic Effects in Mice by Alleviating Disturbed Flow-Induced Oxidative Stress and Inflammation. Oxid Med Cell Longev, 2018, 3491703. https://doi.org/10.1155/2018/3491703
16. Huie, C. W., & Di, X. (2004). Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Analyt Technol Biomed Life Sci, 812(1-2), 241-257. https://doi.org/10.1016/j.jchromb.2004.08.038
17. Hunter, G. C., Dubick, M. A., Keen, C. L., & Eskelson, C. D. (1991). Effects of hypertension on aortic antioxidant status in human abdominal aneurysmal and occlusive disease. Proc Soc Exp Biol Med, 196(3), 273-279. https://doi.org/10.3181/00379727-196-43188
18. Ishizaka, N., Sohmiya, K., Miyamura, M., Umeda, T., Tsuji, M., Katsumata, T., & Miyata, T. (2012). Infected aortic aneurysm and inflammatory aortic aneurysm—in search of an optimal differential diagnosis. Journal of cardiology, 59(2), 123-131.
https://doi.org/10.1016/j.jjcc.2011.10.006
19. Kent, K. C., Zwolak, R. M., Egorova, N. N., Riles, T. S., Manganaro, A., Moskowitz, A. J., Gelijns, A. C., & Greco, G. (2010). Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg, 52(3), 539-548. https://doi.org/10.1016/j.jvs.2010.05.090
20. Kolodziejczyk-Czepas, J., Bijak, M., Saluk, J., Ponczek, M. B., Zbikowska, H. M., Nowak, P., Tsirigotis-Maniecka, M., & Pawlaczyk, I. (2015). Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic-polysaccharide conjugates. Int J Biol Macromol, 72, 1152-1158. https://doi.org/10.1016/j.ijbiomac.2014.09.032
21. Lai, C. H., Shi, G. Y., Lee, F. T., Kuo, C. H., Cheng, T. L., Chang, B. I., Ma, C. Y., Hsu, F. C., Yang, Y. J., & Wu, H. L. (2013). Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg, 258(6), 1103-1110. https://doi.org/10.1097/SLA.0b013e31827df7cb
22. Li, K., Zhang, K., Li, T., & Zhai, S. (2018). Primary results of abdominal aortic aneurysm screening in the at-risk residents in middle China. BMC Cardiovasc Disord, 18(1), 60. https://doi.org/10.1186/s12872-018-0793-5
23. Lin, J., Chen, S., Yao, Y., & Yan, M. (2023). Status of diagnosis and therapy of abdominal aortic aneurysms. Front Cardiovasc Med, 10, 1199804. https://doi.org/10.3389/fcvm.2023.1199804
24. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and molecular life sciences, 73, 3221-3247.
25. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 73(17), 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
26. López-Candales, A., Holmes, D. R., Liao, S., Scott, M. J., Wickline, S. A., & Thompson, R. W. (1997). Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol, 150(3), 993-1007.
27. Mansouri, A., Reiner, Ž., Ruscica, M., Tedeschi-Reiner, E., Radbakhsh, S., Bagheri Ekta, M., & Sahebkar, A. (2022). Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases. Journal of Clinical Medicine, 11(5), 1313.
28. McCormick, M. L., Gavrila, D., & Weintraub, N. L. (2007). Role of Oxidative Stress in the Pathogenesis of Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(3), 461-469. https://doi.org/doi:10.1161/01.ATV.0000257552.94483.14
29. Miller Jr, F. J., Sharp, W. J., Fang, X., Oberley, L. W., Oberley, T. D., & Weintraub, N. L. (2002). Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(4), 560-565.
30. Nosoudi, N., Nahar-Gohad, P., Sinha, A., Chowdhury, A., Gerard, P., Carsten, C. G., Gray, B. H., & Vyavahare, N. R. (2015). Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles. Circ Res, 117(11), e80-89. https://doi.org/10.1161/circresaha.115.307207
31. Paulenka, Y., Lee, C., Tawayha, M., Dow, S., Shah, K., Henkin, S., & Mosleh, W. (2023). From Natural History to Contemporary Management of Aortic Diseases: A State-of-the-Art Review of Thoracic Aortic Aneurysm. Cardiogenetics, 13(4), 154-172. https://www.mdpi.com/2035-8148/13/4/15
32. Puertas-Umbert, L., Almendra-Pegueros, R., Jiménez-Altayó, F., Sirvent, M., Galán, M., Martínez-González, J., & Rodríguez, C. (2023). Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond), 137(15), 1167-1194. https://doi.org/10.1042/cs20220795
33. Quintana, R. A., & Taylor, W. R. (2019). Cellular Mechanisms of Aortic Aneurysm Formation. Circ Res, 124(4), 607-618. https://doi.org/10.1161/circresaha.118.313187
34. Rastogi, V., Stefens, S. J. M., Houwaart, J., Verhagen, H. J. M., de Bruin, J. L., van der Pluijm, I., & Essers, J. (2022). Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne), 9, 814123. https://doi.org/10.3389/fmed.2022.814123
35. Sagan, A., Mikolajczyk, T. P., Mrowiecki, W., MacRitchie, N., Daly, K., Meldrum, A., Migliarino, S., Delles, C., Urbanski, K., Filip, G., Kapelak, B., Maffia, P., Touyz, R., & Guzik, T. J. (2019). T Cells Are Dominant Population in Human Abdominal Aortic Aneurysms and Their Infiltration in the Perivascular Tissue Correlates With Disease Severity. Front Immunol, 10, 1979. https://doi.org/10.3389/fimmu.2019.01979
36. Sakalihasan, N., Limet, R., & Defawe, O. D. (2005). Abdominal aortic aneurysm. Lancet, 365(9470), 1577-1589. https://doi.org/10.1016/s0140-6736(05)66459-8
37. Salata, K., Syed, M., Hussain, M. A., de Mestral, C., Greco, E., Mamdani, M., Tu, J. V., Forbes, T. L., Bhatt, D. L., Verma, S., & Al-Omran, M. (2018). Statins Reduce Abdominal Aortic Aneurysm Growth, Rupture, and Perioperative Mortality: A Systematic Review and Meta-Analysis. J Am Heart Assoc, 7(19), e008657. https://doi.org/10.1161/JAHA.118.008657
38. Satta, S., Mahmoud, A. M., Wilkinson, F. L., Yvonne Alexander, M., & White, S. J. (2017). The Role of Nrf2 in Cardiovascular Function and Disease. Oxid Med Cell Longev, 2017, 9237263. https://doi.org/10.1155/2017/9237263
39. Shimizu, K., Mitchell, R. N., & Libby, P. (2006). Inflammation and Cellular Immune Responses in Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(5), 987-994. https://doi.org/doi:10.1161/01.ATV.0000214999.12921.4f
40. Shin, M. H., Moon, Y. J., Seo, J. E., Lee, Y., Kim, K. H., & Chung, J. H. (2008). Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic Biol Med, 44(4), 635-645. https://doi.org/10.1016/j.freeradbiomed.2007.10.053
41. Smidfelt, K., Nordanstig, J., Davidsson, A., Törngren, K., & Langenskiöld, M. (2021). Misdiagnosis of ruptured abdominal aortic aneurysms is common and is associated with increased mortality. Journal of Vascular Surgery, 73(2), 476-483. e473.
42. Smina, T. P., Mathew, J., Janardhanan, K. K., & Devasagayam, T. P. (2011). Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ Toxicol Pharmacol, 32(3), 438-446. https://doi.org/10.1016/j.etap.2011.08.011
43. Song, P., He, Y., Adeloye, D., Zhu, Y., Ye, X., Yi, Q., Rahimi, K., & Rudan, I. (2023). The Global and Regional Prevalence of Abdominal Aortic Aneurysms: A Systematic Review and Modeling Analysis. Ann Surg, 277(6), 912-919. https://doi.org/10.1097/sla.0000000000005716
44. Vardulaki, K. A., Walker, N. M., Day, N. E., Duffy, S. W., Ashton, H. A., & Scott, R. A. P. (2002). Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. British Journal of Surgery, 87(2), 195-200. https://doi.org/10.1046/j.1365-2168.2000.01353.x
45. Xu, J. W., Zhao, W., & Zhong, J. J. (2010). Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol, 87(2), 457-466. https://doi.org/10.1007/s00253-010-2576-5
46. Xu, Z., Chen, X., Zhong, Z., Chen, L., & Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am J Chin Med, 39(1), 15-27. https://doi.org/10.1142/s0192415x11008610
47. Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J., & Cai, Z. (2021). Abdominal aortic aneurysm: roles of inflammatory cells. Frontiers in immunology, 11, 609161.
48. Zhou, Y., Yang, X., & Yang, Q. (2006). Recent Advances on Triterpenes from Ganoderma Mushroom. Food Reviews International, 22(3), 259-273. https://doi.org/10.1080/87559120600694739
校內:2026-08-31公開