簡易檢索 / 詳目顯示

研究生: 林子翔
Lin, Tzu-Hsiang
論文名稱: 探討利用間葉幹細胞或內皮前驅細胞結合幾丁聚醣之溫感型水膠與軟骨化誘導因子於關節軟骨再生之效應
Effects of mesenchymal stem cells or endothelial progenitor cells combined thermoresponsive chitosan-based hydrogel and chondrogenic inducing factors in cartilage regeneration
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 108
中文關鍵詞: 溫感型髕下脂肪墊幹細胞內皮前驅細胞高濃度血小板血漿軟骨再生
外文關鍵詞: Thermosensitive, Infrapatellar fat pad-derived stem cells, Endothelial progenitor cells, Platelet-rich plasma, Cartilage regeneration
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於關節軟骨自我修復的能力有限,故現今研究提出組織工程和細胞治療來作為軟骨缺損修復的潛力性療法。軟骨化生長因子,其可調節軟骨細胞增生和分化。而在不同的生長因子中,轉化生長因子β-1(TGF-β1)顯示在幹細胞分化上扮演著重要的調節者。另一方面,研究發現TGF-β1所引導的內皮細胞轉變間質幹細胞(EndMT)機制可轉化內皮細胞(EC)形成間質幹細胞(MSC),並且可被進一步誘導成軟骨細胞。除了TGF-β1外,高濃度血小板血漿(PRP)也匯聚了許多的生長因子,其研究指出可誘導MSC增生與軟骨分化。另外,在眾多的MSC中,髕下脂肪墊幹細胞 (IFPSC)其軟骨化能力近似於關節滑膜幹細胞。除了傳統的MSC外,內皮前驅細胞 (EPC)具有高度的再生與血管新生能力,可幫助關節軟骨再生。先前研究指出聚異丙基丙烯醯胺接枝幾丁聚醣之溫感水膠 (CSPN),可促進幹細胞之存活和軟骨分化,並進一步發展軟骨組織。本研究包含兩部份:第一部份是探討PRP豐富的微環境對於IFPSC的軟骨和硬骨分化之效應與骨軟骨再生的促進作用。結果顯示,含有PRP之CSPN水膠可促進IFPSC之骨軟骨分化並在短期內有效修復骨軟骨缺損。第二部份,探討TGF-β1誘導後的EPC之幹細胞特性和軟骨分化潛力,並進一步研究其搭配CSPN之軟骨再生能力。研究顯示,EPC藉由TGF-β1引發EndMT機制並獲得幹細胞特性,再經由軟骨化誘導後,分化為似軟骨細胞,其過程參予了TGF-β/Smad訊號路徑。長期活體研究顯示CSPN種植軟骨化EPC可有效再生全層骨軟骨缺損。總結來說,將EPC或IFPSC和CSPN與軟骨化生長因子結合,其對於軟骨組織工程具有加成之助益,尤其是PRP與IFPSC之組合。

    Adult articular cartilage shows a poor self-repair ability after injury. Tissue engineering and stem cell therapies are attractive alternative treatments with potential for cartilage defect repair. Chondrogenic growth factors regulate chondrocyte growth and differentiation. TGF β-1 plays a crucial role as a potent regulator of mesenchymal stem cell (MSC) differentiation. Several studies have found that TGF β-1-induced endothelial-mesenchymal transition (EndMT) converts endothelial cells (ECs) into MSCs, and then differentiates into chondrocytes. Additionally, platelet-rich plasma (PRP) is a reservoir of some critical growth factors, which promote MSC proliferation and chondrogenic differentiation. MSCs derived from infrapatellar fat pad (IFPSCs) show good chondrogenic potential similar to that of synovial MSCs. Apart from adult tissue-derived MSCs, endothelial progenitor cells (EPCs) provide a high tissue regeneration and vasculogenesis capacity for promoting cartilage repair. Chitosan-graft-poly(N-isopropylacrylamide) (CSPN) scaffold reportedly enhances cell viability and chondrogenic differentiation of stem cells, and further produces good cartilage formation. This study was conducted in two parts: in the first, the regenerative potential of IFPSCs cultured in a novel CSPN hydrogel with PRP in an osteochondral defect and on the enhancing effect of PRP-enriched microenvironment on chondrogenesis and osteogenesis of IFPSCs was investigated. Results showed that CSPN-PRP scaffold provided a favorable microenvironment, inducing IFPSCs to differentiate into osteochondral lineages in vitro and enhancing in vivo osteochondral repair in a short-term. Based on these findings, in part II, EPCs and an inducing factor (TGF-β1) were used to further investigate stem cell-like properties and chondrogenic potential of TGF-β1-stimulated EPCs and to examine the regenerative potential of CSPN seeded with chondrogenic EPCs (CEPC-CSPN) in osteochondral repair. Results showed that EPCs presented a stem cell phenotype by TGF-β1-driven EndMT, and subsequently redifferentiated into chondrogenic-like cells, which were mainly mediated by TGF-β/Smad signaling pathway. Long-term in vivo study demonstrated that CEPC-CSPN scaffold had great potential in the regeneration of osteochondral defects. Overall, these results highlight the synergic effects of EPCs or IFPSCs and CSPN hydrogel with chondrogenic factors, which may be beneficial in articular cartilage tissue engineering, particularly in PRP/IFPSC combination.

    中文摘要 I Abstract II 誌謝 IV Table of Content V List of Tables IX List of Figures X Chapter I. Introduction 1 I.1 Composition and Structure of Articular Cartilage 2 I.2 Articular Cartilage Lesions 6 I.3 Current Strategies for Articular Cartilage Repair and Tissue Engineering 7 I.4 Endothelial Progenitor Cells and Infrapatellar Fat Pad-derived Stem Cells as Cell Sources 8 I.5 Transforming Growth Factor-β and Platelet-Rich Plasma as A Microenvironmental Factor 9 I.6 Novel Thermoresponsive Chitosan-g-Poly(N-isopropylacrylamide) Copolymer Hydrogel as Cell Delivery Vehicles for Cartilage Repair 10 I.7 Study Aim of This Thesis 11 Chapter II. The parts of thesis 12 II.1 Part I. The Regenerative Effect of Thermoresponsive CSPN Hydrogel Combined IFPSCs and PRP for Osteochondral Lesion Repair 13 II.1.1 Introduction and Hypothesis 13 II.1.2 Materials and Methods 20 II.1.2.1 Instruments 20 II.1.2.2 Materials 21 II.1.2.3 Synthesis of PNIPAAm (PN) and chitosan-g-PNIPAAm (CSPN) polymers 23 II.1.2.4 Characterization of chitosan-g-PNIPAAm hydrogels 23 II.1.2.5 In vitro cell culture using rabbit IFPSC (rIFPSC) 24 II.1.2.6 Cell culture in PNIPAAm and chitosan-g-PNIPAAm hydrogels 24 II.1.2.7 Autologous PRP preparation 25 II.1.2.8 Preparation of PRP composite hydrogel 25 II.1.2.9 Cell viability test in various hydrogels 26 II.1.2.10 In vitro chondrogenic and osteogenic differentiation 26 II.1.2.11 Creation of in vivo rabbit knee joint osteochondral defect model and histopathology examinations 29 II.1.2.12 Macroscopic evaluations 30 II.1.2.13 Micro-CT evaluations 31 II.1.2.14 Histological and immunohistochemical processing 31 II.1.2.15 Statistical analysis 32 II.2 Part II. Chondrogenic Differentiation Potential of EPCs Encapsulated In A Novel Thermoresponsive CSPN Hydrogel for Cartilage Regeneration 33 II.2.1 Introduction and Hypothesis 33 II.2.2 Materials and Methods 36 II.2.2.1 Instruments 36 II.2.2.2 Materials 36 II.2.2.3 In vitro cell culture using rabbit EPC (rEPC) 37 II.2.2.4 Induction of EndMT and cell differentiation in cultured rEPCs 37 II.2.2.5 In vitro chondrogenic differentiation and signal molecules of TGF-β pathway in the EndMT 39 II.2.2.6 Preparation of chitosan-g-PNIPAAm (CSPN) scaffolds 43 II.2.2.7 Cell culture in chitosan-g-PNIPAAm (CSPN) scaffolds 43 II.2.2.8 Creation of in vivo rabbit knee joint osteochondral defect model and histopathology examinations 43 II.2.2.9 Macroscopic evaluations 44 II.2.2.10 Micro-CT evaluations 44 II.2.2.11 Histological and immunohistochemical processing 45 II.2.2.12 Statistical analysis 45 Chapter III. Results 46 III.1 Part I. The Regenerative Effect of Thermoresponsive CSPN Hydrogel Combined IFPSCs and PRP for Osteochondral Lesion Repair 47 III.1.1 Enzymatic Degradation of The CSPN hydrogel 47 III.1.2 Cell Viability of RIFPSCs Cultured In The PN or CSPN05 Hydrogel or The CSPN05 Hydrogel With PRP 49 III.1.3 Chondrogenesis and Osteogenesis of RIFPSCs In Hydrogels 49 III.1.4 Signaling Cascade and ECM In RIFPSCs after PRP treatment 53 III.1.5 Tissue Regeneration of RIFPSC-Scaffolds In Rabbit Osteochondral Defects 56 III.2 Part II. Chondrogenic Differentiation Potential of EPCs Encapsulated In A Novel Thermoresponsive CSPN Hydrogel for Cartilage Regeneration 61 III.2.1 Cultivation of Rabbit EPCs 61 III.2.2 Characterization of Transdifferented EPCs 62 III.2.3 Chondrogenic Differentiation of Transdifferented EPCs 65 III.2.4 The Signaling Molecules and Protein Synthesis Involved In EndMT Process of EPC and Chondrogenic EPC Development 67 III.2.5 Using Rabbit Model for In Vivo Evaluation of The Regenerative Potential of Cell-Scaffold Constructs In Osteochondral Defects 69 Chapter IV. Discussion 79 IV.1 Part I. The Regenerative Effect of Thermoresponsive CSPN Hydrogel Combined IFPSCs and PRP for Osteochondral Lesion Repair 80 IV.2 Part II. Chondrogenic Differentiation Potential of EPCs Encapsulated In A Novel Thermoresponsive CSPN Hydrogel for Cartilage Regeneration 85 IV.3 The Comparison of Experimental Results Between Part I and II 89 Chapter V. Conclusion 90 References 92

    1. Schumacher BL, Hughes CE, Kuettner KE, Caterson B, Aydelotte MB. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1999;17(1):110-20.
    2. del Olmo N, Galarreta M, Bustamante J, Martin del Rio R, Solis JM. Taurine-induced synaptic potentiation: role of calcium and interaction with LTP. Neuropharmacology. 2000;39(1):40-54.
    3. Poole AR, Pidoux I, Reiner A, Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. The journal of cell biology. 1982;93(3):921-37.
    4. Thur J, Rosenberg K, Nitsche DP, Pihlajamaa T, Ala-Kokko L, Heinegard D, et al. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. The journal of biological chemistry. 2001;276(9):6083-92.
    5. Chow G, Nietfeld JJ, Knudson CB, Knudson W. Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis. Arthritis and rheumatism. 1998;41(8):1411-9.
    6. Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. European cells & materials. 2005;9:23-32; discussion 23-32.
    7. Carranza-Bencano A, Garcia-Paino L, Armas Padron JR, Cayuela Dominguez A. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis and cartilage. 2000;8(5):351-8.
    8. Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis and cartilage. 2001;9(1):22-32.
    9. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. The journal of bone and joint surgery American volume. 1996;78(5):721-33.
    10. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The journal of bone and joint surgery American volume. 1993;75(4):532-53.
    11. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in biotechnology. 2009;27(5):307-14.
    12. Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. Journal of the Formosan Medical Association. 2009;108(2):87-101.
    13. Homicz MR, Schumacher BL, Sah RL, Watson D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2002;127(5):398-408.
    14. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis research & therapy. 2008;10(5):223.
    15. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering. 2001;7(2):211-28.
    16. MacKenzie TC, Flake AW. Human mesenchymal stem cells: insights from a surrogate in vivo assay system. Cells, tissues, organs. 2002;171(1):90-5.
    17. Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. The journal of bone and joint surgery British volume. 2003;85(5):740-7.
    18. Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis and rheumatism. 2006;54(3):843-53.
    19. Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovascular research. 2010;86(3):506-15.
    20. Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem cells. 2004;22(7):1152-67.
    21. Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis and cartilage. 2007;15(6):597-604.
    22. Fan J, Gong Y, Ren L, Varshney RR, Cai D, Wang DA. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta biomaterialia. 2010;6(3):1178-85.
    23. Kurth T, Hedbom E, Shintani N, Sugimoto M, Chen FH, Haspl M, et al. Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthritis and cartilage. 2007;15(10):1178-89.
    24. Diao H, Wang J, Shen C, Xia S, Guo T, Dong L, et al. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue engineering Part A. 2009;15(9):2687-98.
    25. Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. The biochemical journal. 2011;437(3):515-20.
    26. Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T. Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(2):361-9.
    27. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nature medicine. 2010;16(12):1400-6.
    28. Medici D, Olsen BR. The role of endothelial-mesenchymal transition in heterotopic ossification. Journal of bone and mineral research : the official journal of the American Society for bone and mineral research. 2012;27(8):1619-22.
    29. Tang HC, Chen WC, Chiang CW, Chen LY, Chang YC, Chen CH. Differentiation effects of platelet-rich plasma concentrations on synovial fluid mesenchymal stem cells from pigs cultivated in alginate complex hydrogel. International journal of molecular sciences. 2015;16(8):18507-21.
    30. Chiang C-W, Chen W-C, Liu H-W, Chen C-H. Application of synovial fluid mesenchymal stem cells: platelet-rich plasma hydrogel for focal cartilage defect. Journal of experimental & clinical medicine. 2014;6(4):118-24.
    31. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2499-506.
    32. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983-90.
    33. Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2544-51.
    34. Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell biology international. 2014;38(1):72-84.
    35. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials. 2004;25(26):5743-51.
    36. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and cartilage. 2002;10(6):432-63.
    37. Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Jr., Erggelet C, et al. Articular cartilage lesions of the knee. The American journal of sports medicine. 1998;26(6):853-61.
    38. Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clinical orthopaedics and related research. 2001(391 Suppl):S161-70.
    39. Chen G, Tanaka J, Tateishi T. Osteochondral tissue engineering using a PLGA–collagen hybrid mesh. Materials science and engineering: C. 2006;26(1):124-9.
    40. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis and cartilage. 2005;13(4):318-29.
    41. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-51.
    42. Cosgriff-Hernandez E, Mikos AG. New biomaterials as scaffolds for tissue engineering. Pharmaceutical research. 2008;25(10):2345-7.
    43. Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials. 2007;28(2):134-46.
    44. Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE. Cell responses to the mechanochemical microenvironment--implications for regenerative medicine and drug delivery. Advanced drug delivery reviews. 2007;59(13):1329-39.
    45. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Advanced drug delivery reviews. 2002;54(1):37-51.
    46. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation research. 2002;90(3):e40.
    47. Ibusuki S, Fujii Y, Iwamoto Y, Matsuda T. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue engineering. 2003;9(2):371-84.
    48. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD. Thermosensitive chitosan-pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta biomaterialia. 2009;5(6):1956-65.
    49. Chen J-P, Cheng T-H. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50(1):107-16.
    50. D'Este M, Sprecher CM, Milz S, Nehrbass D, Dresing I, Zeiter S, et al. Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. Journal of biomedical materials research Part A. 2016;104(6):1469-78.
    51. Kim JH, Lee SB, Kim SJ, Lee YM. Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer. 2002;43(26):7549-58.
    52. Wang L-Q, Tu K, Li Y, Zhang J, Jiang L, Zhang Z. Synthesis and characterization of temperature responsive graft copolymers of dextran with poly(N-isopropylacrylamide). Reactive and functional polymers. 2002;53(1):19-27.
    53. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials. 2009;30(36):6844-53.
    54. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339-49.
    55. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589-98.
    56. Hao T, Wen N, Cao JK, Wang HB, Lu SH, Liu T, et al. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and cartilage. 2010;18(2):257-65.
    57. Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford, England). 2004;43(8):980-5.
    58. Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature biotechnology. 2003;21(5):513-8.
    59. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2006;101(3):e37-44.
    60. Halpern BC, Chaudhury S, Rodeo SA. The role of platelet-rich plasma in inducing musculoskeletal tissue healing. HSS journal : the musculoskeletal journal of hospital for special surgery. 2012;8(2):137-45.
    61. Brandl A, Angele P, Roll C, Prantl L, Kujat R, Kinner B. Influence of the growth factors PDGF-BB, TGF-beta1 and bFGF on the replicative aging of human articular chondrocytes during in vitro expansion. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2010;28(3):354-60.
    62. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. The journal of bone and joint surgery British volume. 2002;84(2):276-88.
    63. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440-8.
    64. Stewart AA, Byron CR, Pondenis H, Stewart MC. Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis. American journal of veterinary research. 2007;68(9):941-5.
    65. Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, et al. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. Journal of orthopaedic trauma. 2008;22(9):595-604.
    66. Lin SS, Landesberg R, Chin HS, Lin J, Eisig SB, Lu HH. Controlled release of PRP-derived growth factors promotes osteogenic differentiation of human mesenchymal stem cells. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2006;1:4358-61.
    67. Hung CT, Lima EG, Mauck RL, Takai E, LeRoux MA, Lu HH, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. Journal of biomechanics. 2003;36(12):1853-64.
    68. Chang NJ, Lin CC, Li CF, Wang DA, Issariyaku N, Yeh ML. The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials. 2012;33(11):3153-63.
    69. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. The journal of clinical investigation. 2000;105(1):71-7.
    70. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362-7.
    71. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964-7.
    72. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(2):288-93.
    73. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circulation research. 2003;93(11):1023-5.
    74. Krenning G, van der Strate BW, Schipper M, van Seijen XJ, Fernandes BC, van Luyn MJ, et al. CD34+ cells augment endothelial cell differentiation of CD14+ endothelial progenitor cells in vitro. Journal of cellular and molecular medicine. 2009;13(8b):2521-33.
    75. Krenning G, Dankers PY, Jovanovic D, van Luyn MJ, Harmsen MC. Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomaterials. 2007;28(8):1470-9.
    76. Popa ER, Harmsen MC, Tio RA, van der Strate BW, Brouwer LA, Schipper M, et al. Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. Journal of molecular and cellular cardiology. 2006;41(1):86-96.
    77. van der Strate BW, Popa ER, Schipper M, Brouwer LA, Hendriks M, Harmsen MC, et al. Circulating human CD34+ progenitor cells modulate neovascularization and inflammation in a nude mouse model. Journal of molecular and cellular cardiology. 2007;42(6):1086-97.
    78. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109(5):1801-9.
    79. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752-60.
    80. Fan CL, Li Y, Gao PJ, Liu JJ, Zhang XJ, Zhu DL. Differentiation of endothelial progenitor cells from human umbilical cord blood CD 34+ cells in vitro. Acta pharmacologica Sinica. 2003;24(3):212-8.
    81. Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, Simari RD, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119(4):547-57.
    82. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic research in cardiology. 2008;103(1):69-77.
    83. Watanabe J, Nakamachi T, Ogawa T, Naganuma A, Nakamura M, Shioda S, et al. Characterization of antioxidant protection of cultured neural progenitor cells (NPC) against methylmercury (MeHg) toxicity. The journal of toxicological sciences. 2009;34(3):315-25.
    84. Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010;211(1):103-9.
    85. Chang NJ, Lam CF, Lin CC, Chen WL, Li CF, Lin YT, et al. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthritis and cartilage. 2013;21(10):1613-22.
    86. Wang HC, Lin TH, Chang NJ, Hsu HC, Yeh ML. Continuous passive motion promotes and maintains chondrogenesis in autologous endothelial progenitor cell-loaded porous PLGA scaffolds during osteochondral defect repair in a rabbit model. International journal of molecular sciences. 2019;20(2).
    87. Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Seminars in cancer biology. 2012;22(5-6):379-84.
    88. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell and tissue research. 2012;347(1):177-86.
    89. Medici D. Endothelial-mesenchymal transition in regenerative medicine. Stem cells international. 2016;2016:6962801.
    90. Markwald RR, Fitzharris TP, Smith WNA. Structural analysis of endocardial cytodifferentiation. Developmental biology. 1975;42(1):160-80.
    91. Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connective tissue research. 2008;49(3):293-7.
    92. Freyria AM, Mallein-Gerin F. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury. 2012;43(3):259-65.
    93. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. Journal of cellular and molecular medicine. 2010;14(6a):1338-46.
    94. Verdier MP, Seite S, Guntzer K, Pujol JP, Boumediene K. Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatology international. 2005;25(2):118-24.
    95. Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cellular signalling. 2012;24(5):1031-6.
    96. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Science signaling. 2014;7(344):re8.
    97. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The journal of clinical investigation. 2009;119(6):1420-8.
    98. Lam CF, Liu YC, Hsu JK, Yeh PA, Su TY, Huang CC, et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology. 2008;108(3):392-401.
    99. Wu M-C. The chondrogenic effect of thermoresponsive Poly(N-isopropylacrylamide)-g-chitosan hydrogel combined mesenchymal stem cells and platelet-rich plasma for cartilage regeneration [Master]: National Cheng Kung University; 2014.
    100. Drengk A, Zapf A, Sturmer EK, Sturmer KM, Frosch KH. Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells, tissues, organs. 2009;189(5):317-26.
    101. El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. Journal of periodontology. 2007;78(4):661-9.
    102. Kruger JP, Ketzmar AK, Endres M, Pruss A, Siclari A, Kaps C. Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds. Journal of biomedical materials research Part B, Applied biomaterials. 2014;102(4):681-92.
    103. Lee JC, Min HJ, Park HJ, Lee S, Seong SC, Lee MC. Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2013;29(6):1034-46.
    104. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(3):319-36.
    105. Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthodontics & craniofacial research. 2005;8(1):11-7.
    106. Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis and cartilage. 2007;15(3):316-27.
    107. Chang N-J, Erdenekhuyag Y, Chou P-H, Chu C-J, Lin C-C, Shie M-Y. Therapeutic effects of the addition of platelet-rich plasma to bioimplants and early rehabilitation exercise on articular cartilage repair. The American journal of sports medicine. 2018;46(9):2232-41.
    108. Liu X, Yang Y, Niu X, Lin Q, Zhao B, Wang Y, et al. An in situ photocrosslinkable platelet rich plasma - complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair. Acta biomaterialia. 2017;62:179-87.
    109. Milano G, Deriu L, Sanna Passino E, Masala G, Manunta A, Postacchini R, et al. Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: an experimental study in an animal model. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2012;28(5):688-701.
    110. Seol Y-J, Lee J-Y, Park Y-J, Lee Y-M, -Ku Y, Rhyu I-C, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology letters. 2004;26(13):1037-41.
    111. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of biomedical materials research. 2000;51(4):586-95.
    112. Muzzarelli RA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, et al. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials. 1994;15(13):1075-81.
    113. Kim IS, Park JW, Kwon IC, Baik BS, Cho BC. Role of BMP, betaig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plastic and reconstructive surgery. 2002;109(6):1966-77.
    114. Ramezanifard R, Kabiri M, Hanaee Ahvaz H. Effects of platelet rich plasma and chondrocyte co-culture on MSC chondrogenesis, hypertrophy and pathological responses. EXCLI journal. 2017;16:1031-45.
    115. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PloS one. 2014;9(8):e104662.
    116. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue engineering Part C, Methods. 2009;15(3):431-5.
    117. Xu FT, Li HM, Yin QS, Liang ZJ, Huang MH, Chi GY, et al. Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro. American journal of translational research. 2015;7(2):257-70.
    118. Wu CC, Chen WH, Zao B, Lai PL, Lin TC, Lo HY, et al. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials. 2011;32(25):5847-54.
    119. Ai X, Wu Y, Zhang W, Zhang Z, Jin G, Zhao J, et al. Targeting the ERK pathway reduces liver metastasis of Smad4-inactivated colorectal cancer. Cancer biology & therapy. 2013;14(11):1059-67.
    120. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia. 2004;6(5):603-10.
    121. Samarakoon R, Higgins PJ. Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thrombosis and haemostasis. 2008;100(6):976-83.
    122. Li J, Wang J, Zou Y, Zhang Y, Long D, Lei L, et al. The influence of delayed compressive stress on TGF-beta1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways. Biomaterials. 2012;33(33):8395-405.
    123. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. Journal of cellular biochemistry. 2007;101(5):1266-77.
    124. Barcellos-Hoff MH. Latency and activation in the control of TGF-beta. Journal of mammary gland biology and neoplasia. 1996;1(4):353-63.
    125. Sanchez-Duffhues G, Orlova V, Ten Dijke P. In Brief: endothelial-to-mesenchymal transition. The journal of pathology. 2016;238(3):378-80.
    126. Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nature Communications. 2016;7:11853.
    127. Xiang Y, Zhang Y, Tang Y, Li Q. MALAT1 modulates TGF-beta1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017;42(1):357-72.
    128. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plastic and reconstructive surgery. 2007;119(1):112-20.
    129. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue engineering. 2003;9(4):679-88.
    130. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and biophysical research communications. 2004;320(3):914-9.
    131. Zhang K, Zhang Y, Yan S, Gong L, Wang J, Chen X, et al. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta biomaterialia. 2013;9(7):7276-88.
    132. Zhao M, Chen Z, Liu K, Wan YQ, Li XD, Luo XW, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. Journal of Zhejiang University Science B. 2015;16(11):914-23.
    133. Seol YJ, Lee JY, Park YJ, Lee YM, Young K, Rhyu IC, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology letters. 2004;26(13):1037-41.
    134. Moskalewski S, Malejczyk J. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation? Development. 1989;107(3):473-80.
    135. Descalzi Cancedda F, Gentili C, Manduca P, Cancedda R. Hypertrophic chondrocytes undergo further differentiation in culture. The journal of cell biology. 1992;117(2):427-35.
    136. Ishizeki K, Hiraki Y, Kubo M, Nawa T. Sequential synthesis of cartilage and bone marker proteins during transdifferentiation of mouse Meckel's cartilage chondrocytes in vitro. The international journal of developmental biology. 1997;41(1):83-9.
    137. Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS genetics. 2014;10(12):e1004820.
    138. Sa-Lima H, Tuzlakoglu K, Mano JF, Reis RL. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications. Journal of biomedical materials research Part A. 2011;98(4):596-603.

    無法下載圖示 校內:2024-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE