簡易檢索 / 詳目顯示

研究生: 賴潔男
Lai, Chieh-Nan
論文名稱: 束狀微胞於聚噻吩與六甲基苯之亞共晶二元系中的成長
The Development of Fringed Micelle in Hypoeutectic Mixture Composed of Hexamethylbenzene and Comb-like Polythiophenes
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 磊晶成長共晶系統聚(三-已基噻吩)
外文關鍵詞: poly(3-hexylthiophene), hypoeutectic mixture, epitaxy
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討導電高分子聚(三-烷基噻吩)(P3AT)在和六甲基苯(HMB)混摻後,導電高分子在HMB晶相基材上的磊晶成長行為。藉由瞭解側鏈長度、混摻比例、分子量以及石墨烯(Graphene)等因素對P3AT晶相析出的影響,來推論所牽涉的晶相成長機制。
    以熱分析實驗探討混摻比例對熔點的影響,可觀察到隨著P3AT的側鏈的增長,二元相圖的共晶點隨之往P3AT一側移動。選擇的P3AT分子若有分子量較大與側鏈較長等不利結晶的因素,則在HMB晶相上有序相的成長會傾向形成Face-on的排列取向。若P3AT分子具有較短的側鏈與低分子量等有利結晶的因素,則傾向發展出沿著分子鏈方向延伸的長板狀區域,具有Edge-on的排列取向。對於這些晶相的成長結果,不論是排列取向或析出區域的形態,都可以束狀微胞模型(Fringed micelle model)來進行解釋。
    降低P3AT在HMB中的比例後,可以發現P3ATs的Face-on排列取向具有臨界微胞濃度(critical micelle concentration, CMC)的特性,僅在濃度達一定值後方能產生。由於束狀微胞模型中亦有CMC的概念,因此此實驗結果進一步證實了我們的推論。
    若將石墨烯混摻入P3AT與HMB二元系,可以發現到P3ATs均無法形成Face-on的排列取向。因此這個研究上成功的藉由不同的因素來調控P3HT有序相的排列取向。

    Poly(3-alkylthiophenes) (P3ATs) have been widely investigated due to their excellent environmental stability, good processability, and promising electro-optical properties arising from an enhanced crystalline microstructure. However, the electrical conductivity of P3AT can be severely manipulated by molecular organization. Therefore it is needed to explore an effective way to adjust the orientation of P3AT organization for the use within selected devices.
    In previous research, we successfully adjust the orientation of P3AT epitaxial organization via varying the degree of undercooling of eutectic systems of poly(3-alkylthiophenes) (P3ATs) and hexamethylbenzene (HMB). Based on this result, prior formation of fringed micelle is derived. In this research we further explored various influential factors on the epitaxial organization of P3AT in order to decipher the proposed role of fringed micelle.
    The exploration of concentration effect has illustrated that as the concentration of studied P3AT is below a certain limit, only Edge-on organization of P3AT can be formed, indicating the impact of critical micelle concentration (CMC). Taking this fact into consideration, we further identified the effect of crystallization tendency and crystal growth rate. It was recognized that Face-on organization is preferred when crystallization tendency is low or crystal growth rate is slow, in these cases the growth of stable crystalline form is less efficient. In contrast, while crystalline form of P3AT is able to develop efficiently within binary mixture, the growth of Edge-on organization is dominative. Hence this research has illustrated a possible mechanism of manipulating the epitaxial organization of P3AT toward the need of device performance.

    摘要 I Abstract II 誌謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1-1 前言與研究動機 1 第2章 文獻回顧 3 2-1 聚(三-己基噻吩)Poly(3-hexylthiophene-2,5-diyl)介紹 3 2-1-1 簡介 3 2-1-2 單體聚合的規則性 4 2-1-3 P3HT結晶結構 5 2-2 影響P3HT排列結構因素介紹 8 2-2-1 簡介 8 2-2-2 側鏈效應 9 2-2-3 濃度效應 11 2-2-4 石墨烯混摻之效應 13 2-3 磊晶介紹 14 2-3-1 高分子磊晶 14 2-3-2 磊晶對P3HT結晶的影響 17 第3章 實驗材料與方法 20 3-1 實驗材料 20 3-2 實驗分析儀器 23 3-3 實驗流程 27 3-4 實驗步驟 30 第4章 結果與討論 32 4-1 共軛導電高分子和六甲基苯的均質混合 32 4-1-1 聚(三-辛基噻吩)/六甲基苯之二元共晶系統 32 4-1-2 聚(三-己基噻吩)/六甲基苯之二元共晶系統 35 4-1-3 聚(三-丁基噻吩)/六甲基苯之二元共晶系統 40 4-2 P3ATs在HMB晶相表面上的有序成長 41 4-2-1 P3ATs在與HMB二元系中的析出與結晶 41 4-2-2 P3ATs在不同過冷度下的磊晶成長 46 4-2-3 P3ATs析出相的穩定性 52 4-2-4 成長機制的探討 57 4-2-5 分子量對P3ATs在HMB晶相表面上有序排列的影響 61 4-3 濃度對P3ATs在HMB晶相表面上有序排列的影響 63 4-4 混摻rGO對P3ATs在HMB晶相上有序排列的影響 68 第5章 結論 71 參考文獻列表 73

    1. J. Roncali, Chem. Rev. 1992, 92, 711.
    2. T. Ito. H. Shirakawa, S. Ikeda, J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 11.
    3. A. F. Diaz, Chem. Scr. 1981, 17, 142.
    4. G. Tourillon, F. Garnier, J. Electroanal. Chem. 1982, 135, 173.
    5. T. Kawai, M. Nakazono, R. Sugimoto, K. Yoshino, J. Phys. Soc. Jpn. 1992, 61, 3400.
    6. J. B. Nelson, D. P. Riley, P. Phys. Soc. Lond. 1945, 57, 160.
    7. R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney, I. McCulloch, Macromolecules 2007, 40, 7960.
    8. P. C. Ewbank, D. Laird, R. D. McCullough, Organic photovoltaics: materials, device physics, and manufacturing technologies (eds C. Brabec, U. Scherf and V. Dyakonov) John Wiley & Sons. 2008, 4.
    9. http://www.chem.cmu.edu/groups/mccullough/research/rr-poly3alkylthiophene/index.html
    10. R. D. McCullough, Adv. Mater. 1998, 10, 93.
    11. R. D. McCullough, P. C. Ewbank, Handbook of Conducting Polymers (eds T.A. Skotheim, R.L. Elsenbaumer and J. R. Reynolds) Marcel Dekker, New York, 1998, 225.
    12. R. D. McCullough, (1999) The chemistry of conducting polythiophenes: from synthesis to self-assembly to intelligent materials, in Handbook of Oligo- and Polythiophenes (ed. D. Fichou), Wiley-VCH Verlag GmbH, Weinheim, Germany, 2008, 1.
    13. K. Rahimi, I. Botiz, N. Stingelin, N. Kayunkid, M. Sommer, F. P. V. Koch, H. Nguyen, O. Coulembier, P. Dubois, M. Brinkmann, G. Reiter, Angew. Chem. Int. Ed. 2012, 51, 11131.
    14. T. J. Prosa, M. J. Winokur, R. D. McCullough, Macromolecules 1996, 29, 3654.
    15. K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, K. J. Yoshino, Polym. Sci. Pt. B-Polym. Phys. 1991, 29, 1223.
    16. K. Tashiro, M. Kobayashi, T. Kawai, K. Yoshino, Polymer 1997, 38, 2867.
    17. S. V. Meille, V. Romita, T. Caronna, A. J. Lovinger, M. Catellani, L. Belobrzeckaja, Macromolecules 1997, 30, 7898.
    18. G. H. Lu, L. G. Li, X. N. Yang, Adv. Mater. 2007, 19, 3594.
    19. G. H. Lu, L. G. Li, X. N. Yang, Macromolecules 2008, 41, 2062.
    20. http://ics-cnrs.unistra.fr/spip.php?article1240&lang=fr
    21. T. J. Prosa, M. J. Winokur, J. Moulton, P. Smith, A. J. Heeger, Macromolecules 1992, 25, 4364.
    22. M. Brinkmann, P. Rannou, Adv. Funct. Mater. 2007, 17, 101.
    23. http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/639/
    T. S. Shabi, Structural and Morphological Investigations of Poly(3-alkylthiophene) Thin Films Prepared by Low and Room Temperature Casting and Spin Coating Techniques. 2012
    24. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher, Adv. Funct. Mater. 2004, 14, 757.
    25. J. M. Verilhac, G. LeBlevennec, D. Djurado, F. Rieutord, M. Chouiki, J. P. Travers, A. Pron, Synth. Met. 2006, 156, 815.
    26. H. Yang, S. W. LeFevre, C. Y. Ryu, Z. Bao, Appl. Phys. Lett. 2007, 90, 172116.
    27. D. H. Kim, Y. D. Park, Y. S. Jang, H. C. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. J. Park, T. Y. Chang, C. W. Chang, M. K. Joo, C. Y. Ryu, K. W. Cho, Adv. Funct. Mater. 2005, 15, 77.
    28. J. Corish, D. A. Morton-Blake, F. Beniere, M. Lantoine, J. Chem. Soc. Faraday Trans. 1996, 92, 671.
    29. G. Sauvé, et al., J. Mater. Chem. 2010, 20, 3195.
    30. R. Payerne, et al., Synth. Met. 2004, 146, 311.
    31. E. R. Jones, C. R. Bury, Phil. Mag. 1927, 4, 841.
    32. J. Grindley, C. R. Bury, J. Chem. Soc. 1929, 679.
    33. D. G. Davies, C. R. Bury, J. Chem. Soc. 1930, 2263.
    34. http://en.wikipedia.org/wiki/Lyotropic_liquid_crystal
    35. H. Ihara, H. Hachisako, C. Hirayama, K. Yamada, J. Chem. Soc., Chem. Commun. 1992, 1234.
    36. M. Takafuji, H. Ihara, C. Hirayama, H. Hachisako, K. Yamada, Liq. Cryst. 1995, 18, 97.
    37. H. Ihara, K. Shudo, M. Takafuji, C. Hirayama, H. Hachisako, K. Yamada, Jpn. J. Polym. Sci. & Tech. 1995, 52, 606.
    38. H. Ihara, K. Shudo, C. Hirayama, H. Hachisako, K. Yamada, Liq. Cryst. 1996, 20, 807.
    39. H. Hachisako, H. Ihara, C. Hirayama, K. Yamada, J. Chem. Soc., Chem. Commun. 1997, 19.
    40. N. Yamada, E. Koyama, M. Kaneko, H. Seki, H. Ohtsu, T. Furuse, Chem. Lett. 1995, 387
    41. Y. Yasuda, E. Iishi, H. Inada, Y. Shirota, Chem. Lett. 1996, 575.
    42. Y.-C. Lin, B. Kacher, R. G. Weiss, J. Am. Chem. Soc. 1989, 111, 5542.
    43. K. Murata, M. Aoki, S. Shinkai, Chem. Lett. 1992, 739.
    44. K. Murata, M. Aoki, T. Nishi, A. Ikeda, S. Shinkai, J. Chem. Soc., Chem. Commun. 1991, 1715.
    45. Y. Ishikawa, H. Kuwahara, T. Kunitake, J. Am. Chem. Soc. 1989, 111, 8530.
    46. Y. Ishikawa, H. Kuwahara, T. Kunitake, J. Am. Chem. Soc. 1994, 116, 5591.
    47. A. Dominguez, A. Fernandez, N. Gonzalez, E. Iglesias, L. Montenegro, J. Chem. Educ. 1997, 74, 1227.
    48. A. K. Geim, Science 2009, 324, 1530.
    49. M. Fang, K. G. Wang, H. B. Lu, Y. L. Yang, S. Nutt, J. Mater. Chem. 2009, 19, 7098.
    50. H. Lu, Z. Chen, C. Ma, J. Mater. Chem. 2012, 22, 16182.
    51. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
    52. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, L. C. Brinson, Nat. Nanotechnol. 2008, 3, 327
    53. Q. Liu, Z. F. Liu, X. Y. Zhang, L. Y. Yang, N. Zhang, G. L. Pan, S. G. Yin, Y. S. Chen, J. Wei, Adv. Funct. Mater. 2009, 19, 894.
    54. Z. F. Liu, Q. Liu, Y. Huang, Y. F. Ma, S. G. Yin, X. Y. Zhang, W. Sun, Y. S. Chen, Adv. Mater. 2008, 20, 3924.
    55. L. Hua, W. H. Kai, Y. J. Inoue, Appl. Polym. Sci. 2007, 106, 4225.
    56. Y. Liu, G. S. Yang, Thermochim. Acta 2010, 500, 13.
    57. F. Zhang, X. C. Peng, W. B. Yan, Z. Y. Peng, Y. Q. Shen, J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 1381.
    58. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105.
    59. A. Chunder, J. Liu, L. Zhai, Macromol. Rapid Commun. 2010, 31, 380.
    60. Z. L. Yang, X. J. Shi, X. J. Shi, J. J. Yuan, H. T. Pu, Y. S. Liu, Appl. Surf. Sci. 2010, 257, 138.
    61. J. Willems, Naturwissenschaften 1955, 42, 176.
    62. E. W. Fischer, Kolloid. Z. 1958, 159, 108.
    63. J. C. Wittmann, B. Lotz, J. Polym. Sci., Polym. Phys. 1981, 19, 1837.
    64. J. C. Wittmann, B. Lotz, J. Polym. Sci., Polym. Phys. 1981, 19, 1853.
    65. J. C. Wittmann, A. M. Hodge, B. Lotz, J. Polym. Sci., Polym. Phys. 1983, 21, 2495.
    66. J. C. Wittmann, B. Lotz, Prog. Polym. Sci. 1990, 15, 909.
    67. J. A. Koutsky, A. G. Walton, E. Baer, Polym. Lett. 1967, 5, 177.
    68. S. E. Rickert, E. Baer, J. Mater. Sci., Lett. 1978, 13, 451.
    69. J. C. Wittmann, P. Smith, Nature 1991, 352, 414.
    70. S. Kopp, J. C. Wittmann, B. Lotz, Polymer 1994, 35, 916.
    71. V. Da Costa, J. Le Moigne, L. Oswald, T. A. Pham, A. Thierry, Macromolecules 1998, 31, 1635.
    72. L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer 2000, 41, 8909.
    73. L. Brockway, J. M. Robertson, J. Chem. Soc. 1939, 1324.
    74. S. Wellinghoff, F. Rybnikar, and E. Baer, J. Macromol. Sci.-Phys. 1974, B10, 1.
    75. M. Brinkmann, J. C. Wittmann, Adv. Mater. 2006, 18, 860.
    76. M. Brinkmann, P. Rannou, Macromolecules 2009, 42, 1125.
    77. L. Roiban, L. Hartmann, O. Ersen, A. Fiore, P. Reiss, D. Djurado, F. Chandezon, J. F. Legrand, S. Doyle, M. Brinkmann, Nanoscale 2012, 4, 7212.
    78. N. Kayunkid, S. Uttiya, M. Brinkmann, Macromolecules 2010, 43, 4961.
    79. M. Brinkmann, Macromolecules 2007, 40, 7532.
    80. M. Brinkmann, Actual. Chim. 2009, 326, 31.
    81. M. Brinkmann, C. Contal, N. Kayunkid, T. Djuriç, R. Resel, Macromolecules 2010, 43, 7604.
    82. J. C. Wittmann, R. St John Manley, J Polym Sci Polym Phys, 1977, 15, 1089.
    83. L. Hartmann, D. Djurado, J.-F. Legrand, A. Fiore, P. Reiss, S. Doyle, S. Pouget, F. Chandezon, M. Brinkmann, Macromolecules 2013, 46, 6177.

    無法下載圖示 校內:2019-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE