簡易檢索 / 詳目顯示

研究生: 鍾雨軒
Chung, Yu-Hsuan
論文名稱: 登革熱病媒蚊影像偵測
Detection of mosquitoes causing dengue fever by image processing
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 影像辨識登革熱Gamma校正
外文關鍵詞: Image recognition, Mosquito, Dengue fever, Gamma correction
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位於亞熱帶地區,夏季炎熱濕度高,非常適合蚊子生長,近年來登革熱肆虐,蚊子成為人們避之唯恐不及的昆蟲,故本文嘗試設計一套病媒蚊辨識系統,使得登革熱疫情擴散前,能盡早得知病媒蚊聚集較密集的區域,及早噴藥。
    本文使用USB電子顯微鏡,擷取顯微鏡所輸入的影像,在預設顯示裝置及電子顯微鏡Gamma值為1的情況下,使用色彩空間轉換、二值化、邊緣偵測、輪廓提取、Gamma校正及背景相減之影像處理相關演算法,先透過色彩辨識決定是否進行Gamma校正,再透過特徵辨識提取病媒蚊花腳特徵,計算花腳於圖像中所占之像素點總和。
    實驗結果顯示,使用色彩辨識與特徵辨識之綜合方法,其病媒蚊與非病媒蚊辨識率為100%。

    Taiwan is located in the subtropical area. The warm and humid climate of Taiwan creates an ideal incubation environment for mosquitoes. In recent years, the rage of dengue fever has turned mosquitoes into the insects that people avoid like a plague. This study aims to design a mosquito recognition system. The system allows the related agencies to conduct a proper measure to avoid the spread of dengue fever by image processing.
    The developed image processing algorithms include color space conversion, image binarization, edge detection, contour extraction, gamma correction, and background subtraction. The images of the mosquitos are captured by the USB electron microscope first. Then a series of image operations are performed, including color detection to decide whether the gamma correction is needed and identifying the black-and-white-striped legs of dengue mosquitos through feature detection. In the process, the pixel sum of the black-and-white-striped legs in the image is calculated for the classification of mosquitos. By combining the color detection and feature detection, the recognition rate of dengue and non-dengue mosquitos can reach 100%.

    摘要 I EXTENDED ABSTRACT II 致謝 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 1.3論文架構 3 第二章 文獻回顧 5 2.1昆蟲辨識文獻回顧 5 2.2 GAMMA校正文獻回顧 8 第三章 影像前處理 10 3.1色彩空間 10 3.1.1 RGB色彩空間 10 3.1.2 HSV色彩空間 11 3.2二值化 13 3.3型態學 14 3.3.1侵蝕運算(Erosion) 15 3.3.2膨脹運算(Dilation) 16 3.3.3斷開(Opening)及閉合(Closing)運算 17 3.4影像分割 17 3.4.1邊緣偵測 17 3.4.2輪廓提取 19 3.4.3直方圖 19 3.5 GAMMA校正 21 3.5.1 Gamma校正原理 21 3.5.2 Gamma校正應用 23 3.6背景相減法 25 第四章 影像辨識系統 26 4.1系統架構 26 4.2蚊子分割 27 4.3蚊子辨識 29 4.3.1辨識流程圖 29 4.3.2色彩辨識 30 4.3.3特徵辨識 32 4.3.3.1直方圖投影 32 4.3.3.2 Gamma校正 35 4.3.3.3輪廓提取 36 4.3.3.4背景相減 37 第五章 實驗結果與討論 39 5.1 實驗環境 39 5.2 實驗結果 40 5.2.1病媒蚊特徵辨識 40 5.2.2非病媒蚊特徵辨識 42 5.2.3辨識結果 44 5.3 辨識結果比較 49 第六章 結論與建議 53 6.1結論 53 6.2建議 53 參考文獻 54

    [1] 台東縣衛生局 http://www.ttshb.gov.tw/files/15-1000-813,c201-1.php?Lang=zh-tw, March, 2017
    [2] 台灣環境有害生物管理協會
    http://www.tepma.org.tw/html/, March, 2017
    [3] 高雄市政府衛生局http://khd.kcg.gov.tw/Main.aspx?sn=410&mt=14&gs=18790, May, 2017
    [4] 社團法人台灣感染管制學會https://www.nics.org.tw/old_nics/magazine/17/05/17-5-03.htm, March, 2017
    [5] 衛生福利部疾病管制署https://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=4&disease=061&position=1, May, 2017
    [6] 衛生福利部疾病管制署www.cdc.gov.tw/downloadfile.aspx?fid=8ad146a30fbf4cbf, May, 2017
    [7] 蔡濟鴻(2012),以顏色與灰階梯度特徵為基礎的昆蟲影像辨識系統。崑山科技大學資訊管理系碩士論文。
    [8] 陳柏翰(2008),影像亮度變化對白平衡演算法影響之研究。北台灣科學技術學院碩士論文。
    [9] 陳錦杏,譚巽言,黃文增,林殷旭(2009),自動白平衡之軟硬體共同設計。臺北科技大學學報,41,101-114頁。
    [10] 蔡哲民, 葉文斌, 陳世杰, 林昶瑔, 傅耀賢(2010)。台灣地區天蠶蛾 (鱗翅目: 天蠶蛾科) 網路影像辨識系統。生物科學,52(2),57-69頁。
    [11] L. Q. Zhu and Z. Zhang, “Auto-classification of insect images based on color histogram and GLCM,” Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2589-2593.
    [12] J. Wang, C. Lin, L. Ji, and A. Liang, “A new automatic identification system of insect images at the order level,” Knowledge-Based Systems, Vol. 33, pp. 102-110, 2012.
    [13] M. T. Do, J. M. Harp, and K. C. Norris, “A test of a pattern recognition system for identification of spiders,” Bulletin of Entomological Research, Vol. 89, No. 3, pp. 217-224, 1999.
    [14] M. Mayo and A. T. Watson, “Automatic species identification of live moths,” Knowledge-Based Systems, Vol. 20, No. 9, pp. 195–202, 2007.
    [15] A. M. M. Reyes, A. C. A. Reyes, J. L. Torres, D. A. Padilla, and J. Villaverde, “Detection of aedes aegypti mosquito by digital image processing techniques and support vector machine,” IEEE Region 10 Conference- Proceedings of the International Conference, pp. 2342-2345, 2016.
    [16] U. Chiaki, A. Tadahiro, S. Noriaki, and U. Eiji, “Gamma correction-based image enhancement for elderly vision,” 15th International Symposium on Communications and Information Technologies, pp. 141-144, 2015.
    [17] M. Farshbaj Doustar and H. Hassanpour, “A locally-adaptive approach for image gamma correction,” 10th International Conference on Information Science, Signal Processing and their Applications, pp. 73-76, 2010.
    [18] D. Zhang, W. J. Park, S. J. Lee, K. A. Choi, and S. J. Ko, “Histogram partition based gamma correction for image contrast enhancement,” 16th International Symposium on Consumer Electronics, pp. 1-4, 2012.
    [19] B. Gupta and M. Tiwari, “Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework,” Optik - International Journal for Light and Electron Optics, Vol. 127, No. 4, pp. 1671-1676, 2016.
    [20] M. Tiwari and B. Gupta, “Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering,” IEEE Students' Conference on Electrical, Electronics and Computer Science, pp. 1-4, 2016.
    [21] G. Gomez, M. Sanchez, and L. E. Sucar, “On selecting an appropriatecolor space for skin detection,” Second Mexican International Conference on Artificial Intelligence, pp.70-79, 2002.
    [22] Y. Yang, M. Ma, and B. Liu, “Information computing and applications,” Springer-Verlag Berlin Heidelberg, pp. 246, 2013.
    [23] 林清富,色彩原理,台大電機系科普系列。https://www.ee.ntu.edu.tw/hischool/doc/2013.07.pdf。
    [24] T. Tu, X. Fan, and H. Shin, “An efficient pedestrian detection method by using coarse-to-fine detection and color histogram similarity,” Convergence and Hybrid Information Technology, pp. 357-364, 2012.
    [25] K. Van De Sande, T. Gevers, and C. Snoek, “Evaluating color descriptors for object and scene recognition. ”IEEE transactions on pattern analysis and machine intelligence, pp. 1582-1596, 2010.
    [26] 鄭佳其(2009),應用即時影像處理於導盲磚辨識之自走車,成功大學工程科學系學位論文。
    [27] F. Samopa and A. Asano, “Hybrid image thresholding method using edge detection,” International Journal of Computer Science and Network Security, Vol. 9, No. 4, pp. 292-299, 2009.
    [28] W. H. Richardson, “Bayesian-based iterative method of image restoration,” Journal of the Optical Society of America, Vol. 62, No. 1, pp. 55-59, 1972.
    [29] J. Zhang and J. Hu, “Image segmentation based on 2D otsu method with histogram analysis,” International Conference on Computer Science and Software Engineering, pp. 105-108, 2008.
    [30] C. R. Giardina and E. R. Dougherty, “Morphological methods in image and signal processing,” Prentice Hall, 1988.
    [31] A. Singh, M. Singh, and B. Singh, “Face detection and eyes extraction using sobel edge detection and morphological operations, ”3rd International Conference on Systems and Informatics, pp. 295-300, 2016.
    [32] M. Nikolic, E. Tuba, and M. Tuba, “Edge detection in medical ultrasound images using adjusted canny edge detection algorithm,” 24th Telecommunications Forum, pp. 1-4, 2016.
    [33] A. Anand, S. S. Tripathy, and R. Sukesh Kumar, “An improved edge detection using morphological Laplacian of Gaussian operator,” 2nd International Conference on Signal Processing and Integrated Networks, pp. 532-536, 2015.
    [34] H. Xu, “An improved edge detector based on the Laplacian operator,” 6th International Congress on Image and Signal Processing,” pp. 416-421, 2013.
    [35] S. Gupta and S. G. Mazumdar, “Sobel edge detection algorithm,” International journal of computer science and management Research, Vol. 2, No. 2, pp. 1578-1583, 2013.
    [36] G. Bradski and A. Kaehler, “Learning OpenCV,” O'Reilly Media, pp. 240, 2008.
    [37] 連國珍(2004),數位影像處理,儒林書局。
    [38] C. Xiao, W. Chen, and H. Gao, “Object tracking algorithm based on HSV color histogram and block-sparse representation,” 34th Proceedings of the Chinese Control Conference, pp. 3826-3831, 2015.
    [39] E. Rachmawati, M. L. Khodra, and I. Supriana, “Histogram based color pattern identification of multiclass fruit using feature selection,” 5th International Conference on Electrical Engineering and Informatics, pp. 43-48, 2015.
    [40] N. Varish and A. K. Pal, “Content based image retrieval using statistical features of color histogram,” 3rd International Conference on Signal Processing, Communication and Networking, pp. 1-6, 2015.
    [41] N. Bassiou and C. Kotropoulos, “Color histogram equalization using probability smoothing,” 14th European Signal Processing Conference, pp. 1-5, 2006.
    [42] X. Ma and H. Zhang, “Joint Geometry and Gray-Level Histogram Model for Lip-reading,” 12th World Congress on Intelligent Control and Automation, pp. 3083-3087, 2016.
    [43] H. Jeon and T. Kim, “Grey-level context-driven histogram equalisation,” IET Image Processing, Vol. 10, No 5, pp. 349-358, 2016.
    [44] F. Yang, M. Hamit, A. Kutluk, C. Yan, L. Li, W. Yuan, and D. Kong, “Feature extraction and analysis on X-ray image of Xinjiang Kazak esophageal cancer by using gray-level histograms,” IEEE International Conference on Medical Imaging Physics and Engineering, pp. 61-65, 2013.
    [45] H. Yang and X. Hou, “Histogram modification using grey-level co-occurrence matrix for image contrast enhancement,” IET Image Processing, Vol. 8, No. 2, pp. 782-793, 2014.
    [46] 網頁 http://sc.chinaz.com/tupian/130106267352.htm, March, 2017
    [47] 陳一平, 葉素玲(2000),視知覺實驗的顯示器伽瑪校正:理論與實務。應用心理研究,,5,143-164頁。
    [48] 網頁 http://aboutdada.com/?p=2171, March, 2017
    [49] L. Bu and S. C. Chen, “A novel dynamic over-drive scheme for LCD with dynamic driving gamma curves,” International Symposium on VLSI Design Automation and Test, pp. 45-48, 2010.
    [50] J. Liu, W. H. Gui, Z. H. Tang, X. M. Mu, and J. Y. Zhu, “Spatial-temporal method for image denoising based on BLS-GSM in curvelet transformation,” Proceedings of the 31st Chinese Control Conference, pp. 4027-4032, 2012.
    [51] K. C. Chang, P. K. Liu, and Y. S. Wang, “Parallel design of background subtraction and template matching modules for image objects tracking system,” International Computer Symposium, pp. 18-21, 2016.

    無法下載圖示 校內:2019-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE